
Tutorial Instructions

Lectures 3 and 4

1 Hello world

Write a program that prints “Hello, world!”, and save it as helloWorld.cpp.
Compile it and run it from a terminal.

g++ -o helloWorld helloWorld.cpp
./helloWorld

2 Containers

The file maxVal.cpp contains functions that are supposed to find the maxi-
mum value in various containers. Implement them, then run the test program
to see if you did it right. Recall that a map stores key-value pairs. The map
version should find the maximum key and return the corresponding value.

g++ -o test test.cpp maxVal.cpp
./test

3 Palindromes

The file palindrome.h declares functions for determining whether or not a
given string is a palindrome. However, as you will see in palindrome.cpp,
all the important ones have not been implemented. Your task is to write the
functions so that the program in test.cpp completes successfully. A palin-
drome, as you know, is a string that reads the same forward and backward.
The word ‘mom’ is a palindrome, and the phrase ‘Never odd or even’ is a
palindrome if case and spaces are ignored. The program can be compiled
and run as follows.

g++ -o test test.cpp palindrome.cpp
./test

1



4 Pointers

The file pointerTest.cpp contains a bunch of functions that manipulate
pointers. Your task is to edit the body (not the signature) of these functions
so that their output satisfies the assertions performed in the main function.

5 Debugging time

The file debugThis.cpp contains a program that is supposed to invert a
function, but it crashes when run. Your task is to fix it. Once you have fixed
the program so that it runs as intended, you will see that it’s actually quite
slow. Make it run faster! Alternatively, if you don’t know how to write the
code, think about how you could make the program run faster and discuss
your answer with the teacher.

The file debugThis2.cpp contains a simple program with a few print
statements. Study the code and try to guess what will be printed, then run
the program and see if you were right. Some of the results will probably
be unexpected. Your task is not to fix the program, but to understand why
it printed what it did. Fiddle with the code and try to figure it out, then
discuss your answer with the teacher.

6 Lists of integers

The files num1.dat and num2.dat contain lists of integers. We want to know
which numbers are present in num1.dat but not in num2.dat and vice versa.
Write a program that performs this task, then compile and run it (you should
know how by now). Of course, we will want to compare other files in the
future, so the names num1.dat and num2.dat should not be hard-coded. Let
the user provide them from the command line.

Answer: The numbers unique to num1.dat are 90721, 2080770 and 2436800
while the numbers unique to num2.dat are 154321, 518479 and 2469334.

2



7 Significant points

We have built a detector to monitor suspicious alien activity. The detector,
which is pointed at space, counts the number of detected subspace trans-
missions during a certain period of time and writes this data to a file called
detReadout.dat. Each row of the file has three numbers. The format is
<time> <counts> <flag>. Table ?? explains the meaning of each field.

Table 1: The meaning of each field in detReadout.dat. The data in this file
could be represented by a set of points in a graph with time on the x-axis
and counts on the y-axis.

<time> The time in hours at which the detector was read out
<counts> The number of counts detected since the last readout
<flag> This flag is 1 if the data is OK, 0 otherwise

The data is probably all background noise, but we want to be sure. Write
a program that checks if, at any point, a significant number of subspace
transmissions were detected. A point is considered significant if it is at
least five standard deviations away from the mean. In case you forgot, the
standard deviation of a data sample is given by

σ =

√√√√ 1

N

N∑
i=1

(yi − µ)2 =

√√√√ 1

N

N∑
i=1

(
y2i
)
− µ2 (1)

where N is the number of data points, xi is the number of counts in the i:th
point and µ is the average number of counts in the sample. Remember to
check the data quality flag. If a point is not OK, it should not be included
in the calculation. What values did you obtain for µ and σ?

Answer: The mean is µ = 24.96, the standard deviation is σ = 10.48 and
there is alien activity at 149h (130 counts), 486.4h (219 counts) and 653.8h
(84 counts).

3



8 Write a class

The file graph.cpp contains a code skeleton for a rudimentary graphing class.
Your task is to implement all of the missing functions. The file test.cpp
contains a small program that creates a few graphs and prints the values
returned by the various functions. Table ?? shows an example of the output
you might get after completing the class. Numbers that are very close to but
not exactly at their expected values are the result of small numerical errors.

Table 2: The table shows an example output for the four graphs used in
test.cpp. Note that the x-axis used by the graph f(x) = 2x is logarithmic,
such that the spacing between the points is much smaller at low x. When a
value is outside the range defined by the graph, both the cases of returning
zero and using a linear extrapolation are considered.

Graph Empty (0, 1) f(x) = sin(x) f(x) = 2x
Defined in - - [0, 2π] [0.001, 10]

size 0 1 1000 1000
mean 0 1 8.91964e-14 2.1791
stdev 0 0 0.707107 4.14067
integral 0 0 1.99363e-05 99.999

Zero outside range

f(-0.1) 0 1 0 0
f(pi/2) 0 1 1 3.14159
f(15) 0 1 0 0

Linear extrapolation outside range

f(-0.1) 0 1 -0.0999993 -0.2
f(pi/2) 0 1 1 3.14159
f(15) 0 1 8.71641 30

You will have to make some design decisions while writing the class. For
example, it is not immediately obvious what to do when the user wants to
evaluate y at a point outside of the range defined by the graph. You could
return zero, use the closest value or extrapolate somehow. Likewise, you
should always make sure that the class knows what to do when graph is
empty, contains only one point or other border cases. Such decisions come
up frequently in real life, and you must use your best judgment. Compare
your results to Table ?? and decide if they make sense.

4



9 Makefiles and inheritance

In this exercise, your task is to extend the shape class used in the lecture.
Two additional classes should be implemented. The circle class should
derive directly from shape. Its constructor should take the radius of the
circle as an argument. The square class should derive from rectangle, and
its constructor should take the side of the square as an argument. Imple-
ment getters and setters for the radius of the circle and the side of the
square. You should then implement a new function circumference for all
the various shapes. It should, as you guessed, return the circumference of
the shape. Figure ?? shows the appearence of the circle and triangle.
Notably, you may assume that the triangle is right-angled when calculating
its circumference.

Base

H
e
ig
h
t

Base

H
e
ig
h
t

Figure 1: The appearence of the circle and triangle classes that derive
from shape. The base and height of the shape class correspond to the
radius of the circle. The triangle is assumed to be right angled.

The file defaultTest.cpp contains the example shown in the lecture.
You can use it as a sanity check. The file newTest.cpp contains a program
that will test the new shapes. Once you have implemented circle and
square, uncomment the corresponding lines in newTest.cpp and confirm
that the output matches what is shown in Table ??.

Compiling defaultTest.cpp and newTest.cpp via command line is cum-

5



Table 3: The properties of the shapes used in newTest.cpp.
Triangle Rectangle Square Circle

Base 10 10 7 5
Height 5 5 7 5
Area 25 50 49 78.5
Circumference 26.2 30 28 31.4
Big enough X X X X

bersome due to the many files involved. In the real world, a make tool is used
for anything but the most trivial of programs. The make tool builds programs
using information from a Makefile. Read through the provided Makefile
and try to understand what it does. You can type make defaultTest or
make all in a terminal to build the defaultTest executable. When you
have implemented the new shapes, edit the Makefile so that it builds also
the newTest executable.

6


