
Computer exercise about elliptic flow

P. Christiansen (Lunds University)

November 30, 2014

Abstract

The goal of this exercise is to develop a toy simulation that can test various ways of measuring the elliptic
flow.

1 The quark gluon plasma and elliptic flow

x

z

y

px

py pz

Spatial
asymmetry

Spatial
asymmetry

Pressure
gradients
Pressure
gradients

Azimuthal
anisotropy
Azimuthal
anisotropy

Figure 1: Left: QCD phase diagram [1]. Right: illustration of how elliptic flow arises in non-central heavy ion
collisions.

Elliptic flow is a special phenomenon that occurs in collisions of heavy ions, e.g., at LHC. In central high
energy heavy ion collisions a phase of deconfined quarks and gluons called the Quark Gluon Plasma (QGP)
is produced, see Fig. 1. After production the QGP expands and cools off before it finally hadronizes. It is by
studying the produced hadrons that we attempt to understand the properties of the QGP.

Surprisingly it has been shown that the expansion of the QGP medium is the same as expected for an
almost ideal fluid. Because in most collisions the initial geometry is not symmetric, but is rather elliptic, see

1

Fig. 1, the expansion is asymmetric and gives rise to so-called elliptic flow: the distribution of particles in
the final state is asymmetric in the azimuthal plane. In general this effect also depends on the transverse
momentum of the particles and peaks at pT ≈ 3 GeV/c. It also has a mass dependence such that heavier
particles are more affected by the flow. This can be understood if one considers a particle produced at rest
(pT = 0) and then boosts it with the fluid flow velocity β and looks at the mass dependence of the final pT .

2 How to measure elliptic flow

Figure 2: Left: STAR data used to estimate v2 using the event plane method (2 < pT < 6 GeV/c). The elliptic
flow v2 is ≈0.1 for the most central collisions (0-10%) and ≈0.2 for the most peripheral collisions (31-77%) [2].
Right: Results from ALICE at LHC showing v2 as a function of pT extracted using 4-particle correlations [3]. The
grey bands show comparable results from STAR at a beam energy that is more than 10 times smaller indicating
that indeed we have a Quark Gluon Plasma with similar properties at both energies.

There are several ways to measure the elliptic flow. In this exercise we will test some of the different ways.

2.1 Event Plane method

In the event plane method we estimate the reaction plane in each collision and then align the particles relative
to this plane. In this way we can average over many events.

If the particles in an event is distributed according to:

f(ϕ) ∝ 1 + 2v2 cos[2(ϕ−Ψ2)], (1)

then the event plane we want to determine is Ψ2.
It can be shown (good optional exercise) that Ψ2 can be estimated as:

Ψ2 =
1

2
tan−1

(
〈sin(2ϕ)〉
〈cos(2ϕ)〉

)
, (2)

where it is smart to use the ROOT function TMath::ATan2(y, x).
One then histograms all tracks relative to this plane in each event. After measuring over many events one

fits the final histogram using a constant (normalization) times Eq. 15, see Fig. 2 left.
The elliptic flow measured this way is often denoted v2{EP}. It is in this authors opinion the most easy

method to understand and one can easily visually check that one did not make a grave mistake, but is is not
as precise as the other methods.

2

2.2 2-Particle correlations

The Event Plane method is criticized for the need to first determine the event plane and then measure v2

since the statistical precision with which we can determine the event plane event-by-event will affect the result
(even one typically corrects for this using a resolution function). One can avoid this by studying 2-particle
correlations 1:

〈cos[2(ϕ1 − ϕ2)]〉 = Re〈ei2(ϕ1−ϕ2)〉

= Re〈ei2(ϕ1−Ψ2−ϕ2+Ψ2)〉

≈ Re
[
〈ei2(ϕ1−Ψ2)〉〈ei2(ϕ2−Ψ2)〉

]
= 〈cos[2(ϕ1 −Ψ2)]〉〈cos[2(ϕ2 −Ψ2)]〉

= v2
2 ,

(3)

where the average is over all pairs, and the assumption in line 3 is that there are no direct correlations between
particle 1 and 2, but only indirect correlations through the common event plane Ψ2.

In this way we determine the 2-particle correlation factor 〈2〉 = 〈cos[2(ϕ1−ϕ2)] and we write v2{2} =
√
〈2〉.

2.3 2-Particle correlations using the Q-vector

To determine the 2-particle correlations we need a nested double loop, e.g, if we have 1000 tracks we loop for
track 1 over the remaining 999 particles, for track 2 over the remaining 998 particles, and so on. Especially
when one goes to 4-particle correlations and higher this becomes impossible due to the time it takes.

It turns out that one can determine Qn =
∑

tracks e
inϕ with which it is easy to show that:

〈2〉 =
|Q2|2 −M
M(M − 1)

(4)

In this way one just have to loop one time over all tracks to calculate 〈2〉.

3 Different Ways to Generate Random Numbers According
to a Distribution

To be able to test the different methods we want to be able to generate random numbers that are distributed
like Eq. 15. Here we shall not discuss how one can generate a so-called flat distribution of random numbers
between 0 and 1, but show how one can use these to generate any distribution.

In the following example we always wants to generate numbers distributed according to sinx and we will
show plots from the macro generate sinx.C that is also made available to you.

3.1 The box method

This is a simple method that works as long as one generates random numbers in a restricted range, but is not
always very efficient. We generate two random numbers x and y. We scale x so that it gives a random point
in the restricted range we want to generate random numbers in. Now we scale y so it matches the range from
0 to the maximum value of the function f(x) we want t generate. Now we accept x if y < f(x) and reject x
otherwise.

Figure 3 gives an example of this method.

1The biggest gain is when we go to higher order correlations, see Advanced Topic 2.

3

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input random variables hThrown
Entries 10000
Mean x 1.561
Mean y 0.507
RMS x 0.9032
RMS y 0.2877

Input random variables

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

Box generated sin(x) distribution hSin
Entries 6328
Mean 1.57
RMS 0.6756

 / ndf 2χ 103.4 / 99
Prob 0.3615
p0 1.24± 97.77

Box generated sin(x) distribution

Figure 3: The box method. Left: 2-dimensional histograms showing all attempted (x, y) blue, and those accepted
in red. Right: The distribution of accepted x values. The red function is a fit to the generated data.

3.2 The analytical

In some cases one can integrate and invert the probability density distribution. In this case, e.g.:

P (x) =
1

2
sinx∫ π

0

P (x′)dx′ = 1

y =

∫ x

0

P (′x)dx′ =
1

2
[− cosx′]x0

=
1

2
(1− cosx), so that

x = cos−1(1− 2y)

(5)

This means that if we generate a random number y between 0 and 1 then we should just apply the
transformation x = cos−1(1− 2y) to get random numbers distributed according to sinx.

From this method one will get a similar distribution as Figure 3 right, but one has a 100% efficiency.
This method cannot always be used, because it is not always possible to invert a function. Sometimes it

can be used even when x can take unbounded values, e.g., if we want to distribute according to an exponential
distribution exp−x/k. There are also unbounded cases where one can combine this with the box method.

4 The histogram method

This method can be used to approximate any function in a restricted range and can also be used in the case
where one only has a histogram, e.g., with real data and want to generate random numbers according to this.

We first choose a binning and then fill in each bin the cumulative function value in this bin. Then we
normalize it to the total integral so that in the last bin we have the value 1.

Now it works in some sense exactly like a numerical approximation of the analytical method. We generate
a random value z and we find the corresponding lowest bin where z is smaller than the histogram value. Now
we use as random number x of this bin. Figure 4 gives an example of this method.

This is the least elegant method, but it is quite simple to implement and can easily be generalized to 2d
and 3d distributions, but one will of course have binning effects even if one can smooth out this.

Here it is meant to illustrate how we understand the basic principles of ROOT’s generic function as
explained in the ROOT class description 2

2See http://root.cern.ch/root/html/TF1.html.

4

http://root.cern.ch/root/html/TF1.html

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Cumulative probabilityCumulative probability

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180

ROOT func generated sin(x) distribution hSin
Entries 10000
Mean 1.563
RMS 0.6843

 / ndf 2χ 104.7 / 99
Prob 0.3278
p0 1.6± 155.4

ROOT func generated sin(x) distribution

Figure 4: The histogram method. Left: Cumulative probability for 100 bins. Right: The distribution of generated
x values. The red function is a fit to the generated data.

Double_t TF1::GetRandom(Double_t xmin, Double_t xmax)

Return a random number following this function shape in [xmin,xmax]

The distribution contained in the function fname (TF1) is integrated

over the channel contents.

It is normalized to 1.

For each bin the integral is approximated by a parabola.

The parabola coefficients are stored as non persistent data members

Getting one random number implies:

- Generating a random number between 0 and 1 (say r1)

- Look in which bin in the normalized integral r1 corresponds to

- Evaluate the parabolic curve in the selected bin to find

the corresponding X value.

The parabolic approximation is very good as soon as the number

of bins is greater than 50.

IMPORTANT NOTE

The integral of the function is computed at fNpx points. If the function

has sharp peaks, you should increase the number of points (SetNpx)

such that the peak is correctly tabulated at several points.

5

5 Compulsory Exercises

This is the list of exercises that each student has to do. In addition there are 3 advanced topics that the
student can optionally solve.

5.1 Exercise 1

Familiarize yourself with the example generate sinx.C. Run the 3 different methods (box, analytical, his-
togram), and understand the differences and advantages.

5.2 Exercise 2

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

hThrown
Entries 10000
Mean x 3.123
Mean y 0.5577
RMS x 1.806
RMS y 0.3165

hThrown
Entries 10000
Mean x 3.123
Mean y 0.5577
RMS x 1.806
RMS y 0.3165

Input random variables

hV2
Entries 90803
Mean 3.134
RMS 1.826

 / ndf 2χ 115.3 / 98
Prob 0.1113
p0 3.0± 906.9
p1 0.00234± 0.04855

0 1 2 3 4 5 6
0

200

400

600

800

1000

hV2
Entries 90803
Mean 3.134
RMS 1.826

 / ndf 2χ 115.3 / 98
Prob 0.1113
p0 3.0± 906.9
p1 0.00234± 0.04855

Box generated v2 distribution

Figure 5: Generating ϕ according to v2 = 0.05. Left: 2-dimensional histograms showing all attempted (ϕ, y)
blue, and those accepted in red. Right: The distribution of accepted ϕ values. The red function is a fit to the
generated data. Note that in the left we only used 10,000 events while in the right we used 100,000 events.

Extend the box method to be able to generate random numbers according to Eq. 15. In all cases we set
Ψ2 = 0. Figure 5 gives an example of how this will work.

Technical help:

• Copy generate sinx.C to a new file: generate v2.C

• Remove all methods except the box method works

• Rename all places sinx to v2.

• Change the code to work for v2. Be careful to also change ranges to match the new situation. The
function should also take the new argument v2.

Make sure after each step that the code still works before going to the next step.

Note that in real data the total transverse momentum will have to be 0. This constrain we do not have
here and so the data we generate does not necessary have to match even idealized collision data. For larger
number of tracks this is likely not an issue.

5.3 Exercise 3

Extend this code to implement all 3 methods.

First we need to convert this to a generator that now should take 3 arguments: Nevents, Ntracks (in each
event), and v2.

• Copy generate v2.C to a new file: calculate v2.C

6

• To speed up visualization only draw hAccepted and change the draw option to COLZ (you can even
remove hThrown).

• Add the Ntrack option and make a temporary storage for the phi angle, e.g.:

Double_t phi[nTracks];

Int_t nt = 0;

while (nt < nTracks) {

....

if(....) {

// for each accepted track

phi[nt] = x;

nt++;

}

}

To test this we fill hV2 in another loop

for(Int_t i = 0; i < nTracks; i++) {

hV2->Fill(phi[nt]);

}

Make sure after each step that the code still works before going to the next step.
Now you have the generator part and should implement the 3 different methods instead of filling the hV2

histogram. It is maybe easier to create one method for the event plane and one for the 2-particle correlation
methods. For the event plane, , you need to loop two times: firstly, to estimate the event-plane, Ψ2 and
secondly to fill the histogram with ϕ − Ψ2. Make sure that ϕ − Ψ2 is in the actual range of your histogram
(add or subtract 2π if it is outside this range).

To help with the 2-particle correlation function part I give here an example of how the loop can be done:

// Q vector

Double_t sum_cos2 = 0;

Double_t sum_sin2 = 0;

// 2-particle

Double_t sum_cos2_diff = 0;

for(Int_t i = 0; i < nTracks; i++) {

sum_cos2 += TMath::Cos(2*phi[i]);

sum_sin2 += TMath::Sin(2*phi[i]);

for(Int_t j = i+1; j < nTracks; j++) {

sum_cos2_diff += 2*TMath::Cos(2*(phi[i]-phi[j]));

}

}

And then one can compare the methods event-by-event and see they give exactly the same, e.g., by printing
out:

v2 (event) = 0.0393162

7

v2 (average of 99 events) = 0.0494526

Q: v2 (event) = 0.0393162

Q: v2 (average of 99 events) = 0.0494526

v2 (event) = 0.0383989

v2 (average of 100 events) = 0.0493544

Q: v2 (event) = 0.0383989

Q: v2 (average of 100 events) = 0.0493544

Note that one can only calculate the v2{2} for an event when 〈2〉 > 0.

5.4 Exercise 4

Which method does the best job of calculating v2?

How does this depend on Ntracks and Nevents?
Bonus question: in the event plane method one has trivial correlations between each article and the event

plane. Since the event plane in each event just tries to maximize the v2 one in general overestimates v2. One
can calculate the event plane for each track where one ignores the track itself. If one does this one instead
always finds a too small v2. Can you understand why? (Hint: study the event plane resolution in your code
and think about what it does to v2).

8

6 Advanced Topic 1: Triangular flow

FLOW FLUCTUATIONS

dN
dφ

∝ 1 +
∞�

n=1

2vn cos n(φ− ψn)

=⇒
�

dN
d∆φ

�
(flow)∝ 1 +

∞�

n=1

2
�

v 2
n

�
cos n(∆φ)

ψRP

�pt

φ

ψ2

ψ3

ψ1

MATT LUZUM (IPHT) FLOW FLUCTUATIONS QUARK MATTER 2011 6 / 9

 (rad.)φ∆
-1 0 1 2 3 4

)
φ

∆
C

(
0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

 < 3.0
t,trig

2.0 < p

 < 2.0
t,assoc

1.0 < p

| < 0.8ηCentrality 0-1%, |

| > 1η∆|

| > 1}η∆{2, |2,3,4,5v

ALI-PUB-50350

Figure 6: Triangular flow. Left: fluctuations can give rise to a triangularity in the created medium. Right: by
going to the 1% most central collisions one can suppress v2 and directly observe the triangular correlations using
2-particle correlation techniques as maxima at 0, 2/3π and 4/3π radians (0, 120, and 240 degrees). Notice that
the red curve is calculated from the 2-particle flow coefficients v2, v3, v4, v5 [5].

In 2005 the PHOBOS experiment at RHIC have shown that to understand the flow fluctuations observed
in Au-Au and Cu-Cu collisions one needs to take into account fluctuations in the positions of nucleon-nucleon
collisions. This means that the impact parameter plane is not always the best symmetry plane to use. In
2010 two experimental physicists, Alver and Roland [4], showed that the same fluctuations could give rise to
triangular flow, v3, see Fig. 6 Left:

f(ϕ) ∝ 1 + 2v3 cos[3(ϕ−Ψ3)], (6)

The ALICE experiment at LHC confirmed this prediction by going to the most central collisions where
the geometric elliptic flow is suppressed, see Fig. 6.

6.1 Step 1: extend your code to handle v3 instead of v2

In this part assume that Ψ3 = 0.
This should be straight forward, but recall that v3 has 3 peaks and in general one therefore needs cos 3ϕ

instead of cos 2ϕ and so on.

6.2 Step 2: extend your code to handle v2 and v3 at the same time

In detailed simulations and confirmed by measurements the symmetry angles Ψ2 and Ψ3 are not correlated.
Ψ2 is geometrical and close to the impact parameter angle, while Ψ3 is related to fluctuations. This might be
necessary to implement to get the methods to work.

9

7 Advanced topic 2: 4-particle correlations

It is known that in addition to correlations through the event plane Ψ2 there are also correlations from decays,
e.g.: φ → K+ + K−. These correlations are called non-flow and can be removed by studying higher order
correlation functions which is the goal of this advanced exercise.

7.1 Step 1: implement non-flow

An easy way to implement non-flow is for each particle (or some fraction of particles) to add one extra particle
with exactly the same ϕ angle 3.

Do this in your code and check that you now estimate a wrong v2{2}.

7.2 Step 2: implement the 4-particle correlation function

In the same way as we defined the 2-particle correlation factor we can define the 4-particle correlation factor:

〈4〉 = 〈cos[2(ϕ1 + ϕ2 − ϕ3 − ϕ4)]〉. (7)

It turns out that by using the 4-particle cumulant one can subtract the 2-particle correlations to v2 so one
only are left with genuine 4-particle correlations:

v2{4} = 4
√
−〈4〉+ 2〈2〉2. (8)

In this way we expect to be insensitive to the non-flow we just added before.

The problem with 〈4〉 is that if you have e.g. 1000 tracks in each event then it will take forever to calculate
the correlation as a nested loop (over i, j, k, l). The trick is to use the Q-vector. It can be shown that:

〈4〉 =
|Q2|4 + |Q4|2 − 2 · Re[Q4Q

∗
2Q
∗
2]

M(M − 1)(M − 2)(M − 3)

− 2
2(M − 2) · |Q2|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
.

(9)

This analytic result and many more can be found here [6].
Implement this estimate and show that now you obtain the correct v2 independent of non-flow. While

v2{2} converges fast and works well even for a few particles in general v2{4} converges much slower and one
therefore needs to run with a lot of tracks in each event 4.

7.3 Final remarks about flow fluctuations

Due to fluctuations the v2 varies event-by-event. As the 2- and 4-particle correlation functions measures v2 to
some power they are biased by these fluctuations. The easiest case to understand is the 2-particle correlation
function. If σ2

v2 = 〈v2
2〉 − 〈v2〉2, then it is clear that one in general with v2{2} measures (neglecting non-flow):

v2{2}2 = 〈v2〉2 + σ2
v2, (10)

so that v2{2} ≥ 〈v2〉.
For 4-particle correlations one finds that when σv2 � 〈v2〉 then:

v2{4}2 = 〈v2〉2 − σ2
v2, (11)

so that v2{4} ≤ 〈v2〉.
This means that we can estimate the fluctuations as:

2σ2
v2 = v2{2}2 − v2{4}2 (12)

Use your code to study this relation (remove non-flow).

3The advantage of this method is not only that it is easy, but one can in fact calculate the exact effect on the 2-particle correlation
analytic. If you do this, then try to understand the nTrack dependence (Hint: consider the number of pairs).

4The number of 4-particle associations grows approximately as (Ntracks)4 so when calculating higher order correlations one
therefore also has to be careful that this can impose a significant bias towards the subsample of the events with the most tracks

10

8 Advanced topic 3: the statistical uncertainty

It can sometimes be difficult to calculate the statistical uncertainty on a quantity that is measured in a
complex way like v2{2}. Here we will illustrate how it can be done by subdividing the total sample into
smaller samples and then from the spread of those assign an uncertainty for the average.

8.1 Step 1: extend your code to make 1000s of analyzes

In this part you want to know the answer for a certain configuration of Ntracks and Nevents. To find this
you can simply just change your code so it will make Nexperiments. Then you can make a histogram with the
results of e.g. v2{2} for each experiment and then in the end you will have a histogram which is approximately
Gaussian and where the mean should be very close to the input v2 and where the σ is the statistical uncertainty.

8.2 Step 2: implement an unbiased estimator for the mean

In this part we now want to divide the original Nevents sample into 10 smaller samples (Nevents/10) that we
then analyze independently (Nexperiments = 10). In this way we can obtain:

σ1/10 =
1

Nexperiments − 1

Nexperiments∑
i=1

(v2,i − 〈v2〉)2, (13)

and then we estimate the statistical uncertainty for the full sample to be:

σ =
σ1/10√

Nexperiments

. (14)

The important thing to notice is that one should divide by Nexperiments− 1 and not Nexperiments in Eq. 13.
This estimator for σ1/10 is called the unbiased estimator because it takes into account that we use 1 degree
of freedom to estimate also 〈v2〉. If you would use the generator v2 in Eq. 13 then you should in fact use
Nexperiments and not Nexperiments − 1.

Test the performance of this method, i.e., compare to the result found in step 1.

Note that since we simulate only few events here (vs millions in real experiments) then the method is not
so good. This is because v2{2} depends non-linearly on 〈2〉. The fluctuations in 〈2〉 must be rather symmetric
and so if they are large this gives an asymmetric influence on v2{2}, e.g. if it fluctuates down to 0 then v2{2}
decreases by 100% while if it fluctuates up a factor 2 v2{2} only increases by 40% 5. Due to the 10 times smaller
statistics one also easier gets negative values for 〈2〉 that one has to decide how to handle. For this reason it
is recommended to have a large number of events and a large v2, e.g., 1000 events with 100 tracks and v2 = 0.1.

Bonus question: what is the motivation to subdivide into 10 subsamples and not 3 or 50?

8.3 Step 3: implement fitter

In the event plane method one actually obtains also a statistical uncertainty from the ROOT fitter.
In this step we want to implement a simple fit program and use that to fit the event plane data and

estimate the statistical uncertainty.
If we normalize the event plane histogram properly we only need to fit the v2:

f(ϕ) = 1 + 2v2 cos[2ϕ]. (15)

The idea is to make a 1 dimensional histogram where on the x-axis we vary v2 and on the y-axis we
calculate χ2:

χ2(v2) =
∑
bins

(f(ϕ)− (hist value in bin))2

(hist uncertainty in bin)2
. (16)

5One can actually do the σ analysis for 〈2〉 instead to reduce these problems.

11

ROOT will keep track of the statistical uncertainty for a histogram when you call the method Sumw2()

just after creating it. The statistical uncertainty in each of the event plane histogram bins is in this case just:√
Nentries/Normalization.

If you select a reasonable range of parameters for the guessed v2 then you should now see a minimum in
your histogram. This is the best estimate of v2 given the current binning. Write a loop into your code that
finds this minimum. Now it turns out that if the fit has good quality then the so-called reduced χ2 should be
close to 1. The reduced χ2 is defines as χ2/Ndof, where the Ndof is the number of degrees of freedoms given
as the number of bins minus the number of fit parameters, so in this case it is number of bins minus 1.
The reduced χ2 quantifies the actual deviation between the fitted curve and the data points and gives a
measure of how similar they are compared to the actual statistical uncertainty of your measurements.
If the reduced χ2 is much less than 1 then it means that your statistical uncertainty is too large or you
have too many parameters in your fit. If the reduced χ2 is much larger than 1 it means that your statistical
uncertainty is too small and likely there are systematic uncertainties that you need to take into account.

Test if the reduced χ2 is close to 1 in your case when you vary the number of histogram bins, the number
of events, and/or the number of tracks.

The statistical uncertainty on the fitted v2 is approximately the absolute distance in v2 you have to step
away from the minimum for the χ2 to be larger by 1 (this step is in χ2 and not in the reduced χ2). Estimate
this in your program and compare to what ROOT gets for the fit.

In more advanced fitters the fitting routine estimates a local derivative in χ2 space around the current
value and then uses that to find where to go next, in this way stepping towards the minimum. For situations
where there are more than one minimum more advanced methods are needed.
In general things gets even more complicated (unstable and time consuming) the more parameters one has in
the fit.

12

References

[1] B. V. Jacak and B. Muller, Science 337, 310 (2012).

[2] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 90, 032301 (2003).

[3] K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 105, 252302 (2010).

[4] B. Alver and G. Roland, Phys. Rev. C 81, 054905 (2010).

[5] K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 107, 032301 (2011).

[6] A. Bilandzic, R. Snellings and S. Voloshin, Phys. Rev. C 83, 044913 (2011).

13

	The quark gluon plasma and elliptic flow
	How to measure elliptic flow
	Event Plane method
	2-Particle correlations
	2-Particle correlations using the Q-vector

	Different Ways to Generate Random Numbers According to a Distribution
	The box method
	The analytical

	The histogram method
	Compulsory Exercises
	Exercise 1
	Exercise 2
	Exercise 3
	Exercise 4

	Advanced Topic 1: Triangular flow
	Step 1: extend your code to handle v3 instead of v2
	Step 2: extend your code to handle v2 and v3 at the same time

	Advanced topic 2: 4-particle correlations
	Step 1: implement non-flow
	Step 2: implement the 4-particle correlation function
	Final remarks about flow fluctuations

	Advanced topic 3: the statistical uncertainty
	Step 1: extend your code to make 1000s of analyzes
	Step 2: implement an unbiased estimator for the mean
	Step 3: implement fitter

