
Florido Paganelli Interpreted Languages 1/57Tutorial 3b

Other languages and C++
Writing scripts

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01 2015

Florido Paganelli Interpreted Languages 2/57Tutorial 3b

Outline

Introduction to scripting

Bash

Scripts

Variables: environment, binding, scope

Control structures

Datasets

Automation using scripting

Genesis of an algorithm

If time allows:

Python
Variables

Some data structures

functions

Florido Paganelli Interpreted Languages 3/57Tutorial 3b

Goals and non-goals of this
tutorial

Goals:

Being able NOT TO PANIC when somebody gives you something you've
never seen before (will happen in your entire career)

Being able to write a bash script.

Understanding the concept of variable. Environment, binding, scope.

Being able to search for information depending on a task one wants to
achieve.

(if time allows) Being able to understand basic python syntax.

Non-goal:

Become a script-fu master. It takes long time for the black belt :)

Become a python coder. We cannot do this in a lecture, there's full
courses out there

Florido Paganelli Interpreted Languages 4/57Tutorial 3b

Scripting vs coding

The word script is taken from a theatrical play
script: a description of the environment on
stage, a sequence of lines and gestures to do

There is no practical difference between
writing code in a compiled language and a
scripted one.

The main difference is that scripted languages
do not require compilation.

Florido Paganelli Interpreted Languages 5/57Tutorial 3b

Prepare for the tutorial

Create a folder Tutorial3b somewhere in you
home and cd into it

might be /svn/username/Tutorial3b/

If you svn update , some code examples are
in my folder floridop/Tutorial3b

Don't work in my folder! Only work in yours,
eventually copy paste my code.

Open geany and get ready to create new files!

Florido Paganelli Interpreted Languages 6/57Tutorial 3b

A bash script and its components

#!/bin/bash

put the output of cat in the variable CPUINFO
CPUINFO=$(cat /proc/cpuinfo)

write the content of CPUINFO to screen
echo "$CPUINFO"

 A bash script is nothing more that a sequence of commands written
in a file.

 The bash interpreter will process those in sequence, from the top
line to the bottom

 Like C++, is possible to define variables and control structures in
the scripting language.

 However, the bash script language has little to share with the
complexity of C++. All that it can do is to execute commands, test
conditions and store things in variables.

 Exercise: Open geany, write and save the following code as
getcpuinfo.sh

Florido Paganelli Interpreted Languages 7/57Tutorial 3b

Anatomy of a bash script
#!/bin/bash

put the output of cat in the variable CPUINFO

CPUINFO= $(cat /proc/cpuinfo | head ­10)

write the content of CPUINFO to screen

echo "$CPUINFO"

The first line has a special syntax: #! tells bash which
interpreter to use. It might be another shell!

Every other line starting with a
hash # is a comment. The
interpreter ignores everything
that follows until the end of
line. Useful to describe code to
human readers.

A variable definition is any string followed by a = symbol. It is a
convention to use capital letters.
Remember that case matters, cpuinfo is different from CPUINFO!

This tells bash to execute a
command and return its output.

A variable call is any variable name prefixed by the $ symbol.
Case does matter here. The quotes affect the output, that in this
case depends on how the echo command works.
The $ symbol stands for “give me the value contained in that
variable”

Florido Paganelli Interpreted Languages 8/57Tutorial 3b

Executing a script
 The script can be made executable as if it was a
command. Commands not in the PATH must have a directory
path identified. To run those in the current directory, prefix
them with ./

pflorido@tjatte:~> chmod +x getcpuinfo.sh
pflorido@tjatte:~> ./getcpuinfo.sh
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz
stepping : 6
cpu MHz : 2127.650

Florido Paganelli Interpreted Languages 9/57Tutorial 3b

Functions

The example above also shows that the variables are always
global (any part of the program can access them). There is a way
of scoping them, but since is not widely used, we will not cover it.
Bash variables have no type, but most of the time is just strings.

One can define functions to reduce complexity and
increase readability

#!/bin/bash

a function that gets meminfo
getmeminfo(){
MEMINFO=$(cat /proc/meminfo)
}

execute the function, it will change the environment
getmeninfo

write the content of MEMINFO to screen
echo "$MEMINFO"

Florido Paganelli Interpreted Languages 10/57Tutorial 3b

Exercises

#!/bin/bash ­x

Exercise 3b.1:
Add to the getprocinfo.sh script a line that outputs
information about the number of lines that contain the
word cpu. Use the pipe | with echo, grep and wc to count.

Exercise 3b.2: Debugging to debug your script, that is,
see what is doing while running, modify the first line this
way:

Florido Paganelli Interpreted Languages 11/57Tutorial 3b

Variables, types
A variable is an identifier, a name, for a memory location. Its
definition implies that the computer will find a free memory space
for that variable. This space, if not initialized, can contain anything.

MEMINFO
10483...

MEMINFO=$(cat /proc/meminfo)

111010101000101001010

Initial Memory location
index

Memory location content (can
span more than one location)

Assigning a value to a variable means putting such
value inside that memory location.

A variable usually has a type, that is, the kind of
information stored inside it. In some language one
must declare it explicitly as you've seen in the previous
tutorial.

In BASH, variable have no type as it is assumed the
content is a string, or a sequence of characters.

10483... Contents of file /proc/meminfo

Florido Paganelli Interpreted Languages 12/57Tutorial 3b

Environment, binding
All the variable and function names
“live” in a space called
environment. You can think of it as
a table in memory containing all
variable names and their associations
with memory chunks.

A name is said to be bound to that
environment when its value is
associated to a memory index in that
environment. In the table on the left
we can see some bindings.

Environment Variable
name

Starting
memory
index

global PWD 48329

global SHELL 483985

global PATH 3412
getcpuinfo.sh CPUINFO 10289
getcpuinfo.sh MEMINFO 18458
getcpuinfo.sh getmeminfo() 3515

In languages like BASH, we do not see memory indexes. In languages
like C++ we can see them in the form of pointers.
Binding can be:

Static, that is, decided at compilation time
Dynamic, that is, decided at execution time (yes one can change
where in the memory that variable is pointing)

Florido Paganelli Interpreted Languages 13/57Tutorial 3b

Visibility, scope

A variable is visible in an environment when its binding is
present in that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location (this depends
on languages)

Usually a function has its own environment, that is, a set of
variables in its own environment, and can see the variables in
other environments according to some rules. These rules define
the scope, or visibility, of a variable.

In the case of BASH, functions do not have own environment.
The scope or visibility of a variable in bash is limited to a bash
instance and all its children. Let's see some examples.

Florido Paganelli Interpreted Languages 14/57Tutorial 3b

The BASH environment: export

1 .Run the export command. You'll see all the
environment variables in the current bash session.

2. Create a new environment variable:
 export MYENV1=”This is a global env var”

3. Find the variable by running export, or just print its content
with echo $MYENV1

4. Open another bash instance by issuing the command bash.
Run export. Can you find the environment variable?

The environment is said to be inherited from the father
process.

5. Open another terminal and run export. Can you find the
environment variable? There is no inheritance.

Florido Paganelli Interpreted Languages 15/57Tutorial 3b

BASH environment: scope
Let's create a bash script envtest.sh with
the following content:

#!/bin/bash

create an environment variable
MYENV2=”This is my second environment variable”

write the content of CPUINFO to screen
echo “Content of MYENV1: $MYENV1"
echo “Content of MYENV2: $MYENV2"

Make it executable
chmod +x envtest.sh

Run it: ./envtest.sh
Try echo “Content of MYENV2: $MYENV2"

The father environment DOES NOT inherit from
children, but bash scripts executed inside it have their
own environment that inherits from the father.

Florido Paganelli Interpreted Languages 16/57Tutorial 3b

Importing an environment

In bash, there is a command that allows you to copy the
environment defined in a script to another script or bash
instance. This command is source

Careful! The command also executes EVERYTHING
inside the BASH script!

If you now try
source ./envtest.sh
echo “Content of MYENV2: $MYENV2"
You'll see that MYENV2 is now in the father bash environment.

As a default, bash sources /etc/profile , ~/profile , ~/bashrc
and some other files every time you open a terminal, so that a
set of default environment variables are defined. You can cat
these files if you're curious to see what is in them.

Florido Paganelli Interpreted Languages 17/57Tutorial 3b

Predefined variables in scripts

Prefixed by the $ symbol, they are instantiated automatically in bash at the start of the script.

Script arguments: $#, $0, $1, $2….

$# is the number of arguments passed to the script

$0 is the name of the script itself as called to be executed

$1..n is each string that follows the name of the script.

Process info and status codes:

$$: process id (PID) of the script itself

$?: exit code of the last executed command (0 if it ended well, any other number otherwise)

$!: PID of last command executed in background

...

Various:

$PATH: list of paths where executable commands are

$PS1: prompt format

$SHELLOPTS: options with which the shell is run

$UID: User ID of the user running the script

...

Florido Paganelli Interpreted Languages 18/57Tutorial 3b

Predefined variables example

#!/bin/bash

predefinedvars.sh
call with: ./predefinedvars.sh arg1 arg2 arg3
#

print out info about arguments to this script
echo “Number of arguments: $#”
echo “Name of this script: $0”
echo “Arguments: $1 $2 $3 $4”

print this script's PID:
echo “PID is $$”

Run the script. Remember to chmod +x predefinedvars.sh to make it
executable!

Exercise: check the output of some other predefined variable, in particular $* and
$@

Florido Paganelli Interpreted Languages 19/57Tutorial 3b

Control structures

Enable the machine to decide on actions
depending on certain conditions.
(if..then...else..fi)

Allow the code to cycle until a certain
condition is met (while...do...done)

Allow the code to cycle for a definite
number of times or over a list of objects
(for...do...done)

Florido Paganelli Interpreted Languages 20/57Tutorial 3b

Conditions

Conditions are of different kinds depending on the languages. The only
condition that BASH can check is whether a command execution
terminates successfully.

An exit value of 0 is TRUE (termination successful), all other values are FALSE
(termination unsuccessful).

The way to specify conditions is as follow:

The square bracket [] or the test command can be used.
Documentation: man test

Example: test ­z filename checks if a file exists

The double square bracket or extended test [[some test command]]. Use
man bash and write: /\[\[expression

Example: [[­z filename]]

The double parentheses for arithmetical expansion and logical operations ((a
&& b)). man bash and write: /\(\(expression

Florido Paganelli Interpreted Languages 21/57Tutorial 3b

Control structures:
if ... then … else .. fi

The BASH syntax is as follows:

 if condition; then
 command1;[command2;…]

 else
 commandA;[commandB;…]

 fi

Florido Paganelli Interpreted Languages 22/57Tutorial 3b

Control structures:
if ... then … else .. fi

­le = less than or equal

#!/bin/bash
testif.sh
run with: ./testif.sh arg1 arg2 arg3
#
test that at least two arguments are passed to the script

if [[$# ­le 2]]; then
 echo "Not enough arguments. Must be at least 3!";
else
 echo "More than 2 arguments. Good!";
fi

Florido Paganelli Interpreted Languages 23/57Tutorial 3b

Control structures:
for ... do … done

Repeat something a predefinite number
of times or for each element in a list.

Syntax:
for i in [list]; do
 command1;[command2;…]
done

Florido Paganelli Interpreted Languages 24/57Tutorial 3b

Control structures:
for ... do … done

Print the arguments using different
condition approaches

#!/bin/bash
testfor.sh
run with: ./testfor.sh arg1 arg2 arg3 ...
#
Print the argument values

echo “Using lists of elements”
index=1 # Reset argument counter
for arg in "$@"
do
 echo "Arg #$index = $arg"
 let "index+=1"
done # $@ sees arguments as separate words.

echo “Using C syntax for the condition”
for ((i=1 ; i <= $# ; i++)); do
 echo "Argument $i is ${!i}";
done

● #$var forces the content
of var to be a number

● Parameter substitution
 ${!var} Gets the value
of a variable with the
name $var instead of
var

Florido Paganelli Interpreted Languages 25/57Tutorial 3b

Control structures:
while … do … done

Keeps doing something as long as
condition is satisfied.

Syntax:
while condition; do
 command1;[command2;…]
done

Florido Paganelli Interpreted Languages 26/57Tutorial 3b

Control structures:
while … do … done

Ask the user to enter a variable value
(using the read command) until the string
end is entered

#!/bin/bash
testwhile.sh
run with: ./testwhile.sh
#
Continue asking numbers until the user writes “end”

while ["$var1" != "end"]; do # while test "$var1" != "end"
 echo "Input variable value (end to exit) "
 read var1 # Not 'read $var1' (why?).
 echo "variable value = $var1" # Need quotes because of "#" . . .
 # If input is 'end', echoes it here.
 # Does not test for termination condition until top of loop.
echo
done
exit 0

Florido Paganelli Interpreted Languages 27/57Tutorial 3b

Datasets

A dataset is some digital collection, maybe a file or a set
of files, that contains data we want to use.

A dataset usually has his own format.

A format is a set of rules that define in a rigorous manner how
the content of the dataset should be read, what are their
meanings and the relationship among the dataset information

The format can be a well know data format, more or less
standardized, or some custom data format that one needs to
learn

A description of the format is usually provided by the
community that generated the dataset. It is very rare that a
dataset contains information about its format.

Florido Paganelli Interpreted Languages 28/57Tutorial 3b

Sample data file

"imdbID","Title","Genre","Director","Country","imdbRating","imdbVotes"
"tt0090084","Storm","Action, Comedy","David Winning","Canada","5.2","53"
"tt0090086","Strannaya istoriya doktora Dzhekila i mistera Khayda","Mystery, Sci-
Fi","Aleksandr Orlov","N/A","6.2","21"
"tt0091002","Eleven Days, Eleven Nights","Drama, Romance","Joe
D'Amato","Italy","3.3","370"
"tt0091012","Equalizer 2000","Action, Adventure, Sci-Fi","Cirio H. Santiago","USA,
Philippines","3.9","180"
"tt0091017","L'escot","N/A","Antoni Verdaguer","Spain","4.8","8"
"tt0091026","Eye of the Eagle","Action, Adventure, War","Cirio H. Santiago","USA,
Philippines","4.5","72"
"tt0091062","Florida Straits","Action, Adventure, Romance","Mike
Hodges","USA","5.5","160"
"tt0091073","Francesca","Comedy, Drama","Vérénice Rudolph","West Germany","N/A","N/A"
"tt0091090","Fu gui bi ren","Comedy, Family, Fantasy","Clifton Ko","Hong
Kong","6.6","97"
"tt0091092","Fuegos","N/A","Alfredo Arias","France","4.0","8"
"tt0091094","Funland","Comedy","Michael A. Simpson","USA","4.4","227"

What can we say by observing this data?
Can we guess something about the structure?

Florido Paganelli Interpreted Languages 29/57Tutorial 3b

Automation and
composition of languages

Cornerstone of open source programming:
if something exist that does a task, and it does it
good, use it and do not rewrite code

Automation of repetitive tasks

Make use of interoperability within languages

Technique: identify subproblems and separate
tasks, increasing debuggability

Choose the right command/language for each
subtask

Florido Paganelli Interpreted Languages 30/57Tutorial 3b

Automation exercise with BASH

Description of the problem to solve:

Write a script checkdataset.sh that downloads a tarball
from the internet and extracts it into a folder, then reads
the contents of the folder and shows the content and
type of each file.

The script takes in input three arguments:

A URL to a file on the web.
http://svncourse.hep.lu.se/svncourse/trunk/floridop/downloads/movies.tar.gz

A name of directory where the file and the contents of the file
will be stored

A name of file where the output will be written.

Florido Paganelli Interpreted Languages 31/57Tutorial 3b

Genesis of an algorithm:
a top down approach

Write a list of each main task translating what I
wrote in the description. We can brainstorm it in
the class before proceeding.

Open a new .sh file with geany

Write down the header and start writing down as
comments the steps to the algorithm. You can
write that on paper first.

An example is placed in svn under
floridop/Tutorial3a/solutions

Florido Paganelli Interpreted Languages 32/57Tutorial 3b

Inspecting the dataset

1.Create a folder called Tutorial3bwip
(use mkdir) and cd into it.

2.Download the file located at:
http://svncourse.hep.lu.se/svncourse/trunk/floridop/downloads/movies.tar.gz

And give it the filename: tarball.tar.gz
(Hint: see man wget)

3. Extract the file with tar
(Hint: see man tar or balazs slides!)

Florido Paganelli Interpreted Languages 33/57Tutorial 3b

Homework 3b.1

Add the information requested for each file
in the dataset.

Hints:
use for to scan a set of filenames

Use the operator >> to append text to an existing file.

Use the commands ls, file, head to gather the
information requested into variables.

Send the code to me via email with subject
Homework 3b.1

Florido Paganelli Interpreted Languages 34/57Tutorial 3b

References

Bash scripting:
http://tldp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/

Florido Paganelli Interpreted Languages 35/57Tutorial 3b

Additional material

If time allows, introduction to Python

Florido Paganelli Interpreted Languages 36/57Tutorial 3b

Python

Interpreted, code is compiled on the fly

Widely used in the scientific community

Easy to learn

Good for quick proof-of-concepts, even
involving complex calculations (there are
a lot of nice libraries out there)

Florido Paganelli Interpreted Languages 37/57Tutorial 3b

The Python interpreter

1) Open the terminal

2)Run the python interpreter:

Florido Paganelli Interpreted Languages 38/57Tutorial 3b

Your first Python program

As python is interpreted, you can directly
write programs in the interpreter console.

Try to write:
print “Hello World!”

and press enter.

Florido Paganelli Interpreted Languages 39/57Tutorial 3b

Your first python program cont.

It is however very unpractical to write a
program on the fly. It's better to save it
to a file as seen for C++.

Python code is conventionally added in a
file with extension .py. This is not very
important for the code to work, but on some
systems like windows the extension matters.

Florido Paganelli Interpreted Languages 40/57Tutorial 3b

Your first python program cont.

Let's create a python script that prints
“Hello Word”.

1) Open you favorite editor. In this tutorial
we will use Geany.

2) Click on the File menu New (with →
template) main.py→

3) Let's analyze the structure of the shown
python file. Any analogy with C++?

Florido Paganelli Interpreted Languages 41/57Tutorial 3b

Python program structure

4) The main function callback

2) License information (optional)

3) The main function

1) The header

Florido Paganelli Interpreted Languages 42/57Tutorial 3b

Python program structure

4) The main function callback

2) License information (optional)

3) The main function

1) The header
Required: Tells command
line to use Python
interpreter

Optional but
recommended: Info about
encoding

Required: definition of the main function

Required: function body indentation.
All you code goes before return 0

Recommended: function return
value

Special variable that asks the
interpreter the predefined variable
__name__ that tells the name of the
default function

Special name
of a function

Function call

Florido Paganelli Interpreted Languages 43/57Tutorial 3b

Python syntax and execution

Syntax features:

Indentation (tabs and spaces) is one of the ways to identify a block of
code in Python. It is fundamental: the author enforced it for readability of
code. Python will fail to compile and write out an error if indentation is bad.

; is the instruction separator, is not as important in Python as in C; it can
be omitted if indentation is well done.

Runtime features:

main will be executed as the first function by the python interpreter.

Therefore our print “Hello World” command goes right before the return
statement, indented as the return statement, followed by a ;

See helloworld.py

Question: why is the if executed?

Florido Paganelli Interpreted Languages 44/57Tutorial 3b

helloworld.py

def main():

 print "Hello World!";

 return 0

if __name__ == '__main__':

main()

TAB

TAB

Florido Paganelli Interpreted Languages 45/57Tutorial 3b

Python variables

Python 2.6.6 (r266:84292, Aug 12 2014, 07:57:07)
[GCC 4.4.5] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> a = 3
>>> b = 'hello!'
>>> print a,b
3 hello!

● The Python interpreter allows you to see the content
of every variable by writing its name. Try writing a
and b and then press enter!

● Use the builtin len(variable_name_here) function to
see how “big” is a variable. What happens?

● More about builtin functions:
https://docs.python.org/2/library/functions.html

Start the Python interpreter (command: python) and try the following:

https://docs.python.org/2/library/functions.html

Florido Paganelli Interpreted Languages 46/57Tutorial 3b

Python dict

Start the Python interpreter (command: python) and try the following:
>>> dict = { 'name': 'florido', 'surname': 'paganelli' }

>>> print dict

{'surname': 'paganelli', 'name': 'florido'}

>>> print dict['name']

florido
>>> dict['name']='Rudolph'

>>> print dict['name']

Rudolph
>>> dict['Address']='unknown'

>>> print dict

{'surname': 'paganelli', 'name': 'Rudolph', 'Address': 'unknown'}

See:
https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

https://docs.python.org/2/library/stdtypes.html#mapping-types-dict

Florido Paganelli Interpreted Languages 47/57Tutorial 3b

Python list

Start the Python interpreter (command: python) and try the following:

>>> list = ['apple', 'pear', 'banana']

>>> print list[1]

pear

>>> list[3]='orange'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

IndexError: list assignment index out of range

>>> list[2]='orange'

>>> print list

['apple', 'pear', 'orange']

>>> list.append('peach')

>>> print list

['apple', 'pear', 'orange', 'peach']

See:

https://docs.python.org/2/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange

https://docs.python.org/2/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange

Florido Paganelli Interpreted Languages 48/57Tutorial 3b

load data in memory

Load the data in the files we just downloaded into
a variable

Learn how to open a file in python

Learn how to use the csv library
https://docs.python.org/2/library/csv.html

Organize the movie records in a python dictionary dict

Add each record in a python list

Print the list (and learn how to PrettyPrint)

Let's look at the code!

https://docs.python.org/2/library/csv.html

Florido Paganelli Interpreted Languages 49/57Tutorial 3b

ExampleD6.4.py

Let's discuss about it and then run it!

Florido Paganelli Interpreted Languages 50/57Tutorial 3b

Homework 3b.2
Hacking, or learning by looking at other's code

Based on exerciseD6.4, write some
python code that loads the CSV files and
prints them to screen with pretty print.

Florido Paganelli Interpreted Languages 51/57Tutorial 3b

Python function

Declaration:
>>> def myfunction(adictionary):

... return adictionary.keys()

...
>>> print myfunction

<function myfunction at 0x7ffe99b35230>

Function Call:
>>> myfunction(dict)

['surname', 'name', 'Address']

>>>

Remember
tabs!TAB

Florido Paganelli Interpreted Languages 52/57Tutorial 3b

Example D6.5
Refactor code into functions

Identify chunks of code that can be moved inside
functions

Replace blocks of code with function calls

Try to refactor the code that opens a file and
creates the db into a new function called
createdb(dirpath)

dirpath is the input argument of the function;
the function should be called with a string that is
the directory where the movies folder is located.

Florido Paganelli Interpreted Languages 53/57Tutorial 3b

exampleD6.5.x.py

exerciseD6.5.first.py shows a solution for
the previous exercise

exerciseD6.5.better.py shows a better
refactoring. Let's have a look at it.

Florido Paganelli Interpreted Languages 54/57Tutorial 3b

Example D6.6
Select subset of the dataset

Select only movies that belong to a
genre and write the selection to a file.
We will use Comedy

Florido Paganelli Interpreted Languages 55/57Tutorial 3b

Notable Python libraries and IDEs

Libraries:

Scipy, for scientific computing

Matplotlib, to draw plots from scientific data

Ipython, an interactive environment like
mathematica or matlab

IDEs:

Eclipse, written in java

Spyder, specific for scientific programming

Eric

Florido Paganelli Interpreted Languages 56/57Tutorial 3b

Missing but worth a look

Regular expressions and string
operations: Python is very good at it
https://docs.python.org/2/library/re.html

C++ libraries compatibility
https://docs.python.org/2/extending/extending.html

Python objects:
https://docs.python.org/2/tutorial/classes.html

https://docs.python.org/2/library/re.html
https://docs.python.org/2/extending/extending.html
https://docs.python.org/2/tutorial/classes.html

Florido Paganelli Interpreted Languages 57/57Tutorial 3b

References

Python documentation:
https://docs.python.org/

https://docs.python.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

