
Project Instructions

1 Introduction

The Swedish Meteorological and Hydrological Institute (SMHI) routinely

records the temperature at various locations in Sweden. In some places, this

has been going on for hundreds of years. In 2013, the institute published

its oldest dataset with average daily temperatures of Uppsala starting from

January 12:th 1722 and ending in 2013. More recent datasets for other

locations are also available as part of the SMHI OpenData initiative. A

collection of SMHI datasets are made available on the course webpage. There

is clearly a wealth of information hiding in these datasets! Use your skills as a

programmer and as a scientist in order to make some interesting observations

regarding the Swedish climate!

2 Project description

Select one of the available SMHI datasets and write a program that extracts

information from the Swedish climate data. Use plots in order to visualize

your results. Use ROOT to make plots and eventual statistical analysis: a

small code skeleton (see Section 4) is provided to get you started. Section 3

contains a few examples of what kind of information you could get from the

data. Decide on at least three interesting results to produce. At least one of

them should be your own idea and should not come from Section 3. Use your

imagination! Start by looking at the data and understanding the content of

the �les and the format, pay attention to descriptive metadata. Note that

the data within one dataset can be of di�erent quality, so you might consider

skipping "bad" records.

In the real world, scientists share code and collaborate. In this project,

you will work together with your colleagues as a team. Each group will be

allocated a place in the svn repository. Add your code, draft reports and

other notes there. The URL for the svn repository is:

1



http://svncourse.hep.lu.se/courseproject/

The repository contains folders per group: group1, group2 etc, each has

a trunk, and a possibility to create branches and tags. Each group should

chose one folder. The students can checkout the code as:

svn co http://svncourse.hep.lu.se/courseproject/group1 group1

It is also possible to checkout the entire repository, if the students wish

to look at the other group's code:

svn co http://svncourse.hep.lu.se/courseproject courseproject

Usernames and passwords are the same as used during the course.

By using svn you and your team members can work independently, com-

mitting the changes to the repository as you go. When working on this

kind of project, it is customary to keep a log. The svn repository should

contain a �le called ChangeLog, where you document your progress. Add a

date and a short descriptive comment to this log for each major change that

you make to the code. The examiners should be able to understand how

did the code develop by reading such a log. As a �rst step of the project

work, every team should prepare a short Workplan document containing the

planned distribution of sub-tasks that have to be done in order to achieve

the goal. Discuss and agree with your colleagues early on what sort of code

needs to be written and agree preliminarily on who should write what in

order to avoid unnecessary collisions. Record the task distribution in the

Workplan document in the svn and, if necessary, update it regularly. If you

get stuck or if you realize that the code needs to be restructured, talk to

your colleagues. This is a team project!

Naturally, you need to document not only your code but also your re-

sults. Use LATEX to write a scienti�c report that describes the results that

you managed to produce and the approaches that you used, such as short

description of classes, functions, methods etc. The report should be complete

with plots to back up your claims. Scientists collaborate on their reports in

very much the same way as they collaborate on their code. Begin by splitting

the report into many .tex �les that you \input from a main �le. Use one

.tex �le for each result that you decided to produce. Then put all of the

report code in svn. Even for very big reports, if everyone is working just on

their own part of the report using the appropriate .tex �le, problems with

collisions are rare.

2

http://svncourse.hep.lu.se/courseproject/


3 Example results

This section contains a few examples of what you could do with the data.

Use them as guidelines and as inspiration. You don't have to do everything

the examples say, but more complete implementations earn you both brownie

points and (probably) a better grade. Remember to comment your code!

3.1 The temperature of a given day

Use the data to make a histogram of the temperature of a given day of the

year. An example of such a histogram is shown in Figure 1. If you choose

to implement this example, uncomment either of the two functions called

tempOnDay. One of the functions accepts a month and a day as arguments.

The other one accepts a date (which is an integer in the range 1 to 365, or

366 if you design your code to understand leap years). Implement one or

both. If you have one, the other should be simple!

• Create a histogram like the one shown in Figure 1.

• What is the mean temperature of the given day?

• What is the standard deviation of the temperature?

• Can you predict the probability of observing a particular temperature?

Hints In ROOT, you often write functions that create one or more plots.

If you want to look at those plots after the function completes, you have to

put the histograms on the heap. If you put them on the stack, they will

go out of scope and be deleted automatically once the function completes.

Once a histogram is deleted it disappears from all plots. This can lead to

a situation where you create histograms on the heap that you never delete.

Technically, this �ts the description of a memory leak. It's a design �aw of

ROOT that it encourages memory leaks in this way. But since you will only

be creating a handful of histograms for plotting, you shouldn't worry about

it. A handful of histograms won't cause the program to run out of memory.

The example code below shows how to create a histogram of integers with 365

bins between 1 and 366. The title of the axes can be speci�ed directly in the

constructor using the trick shown. We then set the �ll color to a darker red,

increment a bin and calculate some properties of the distribution. Finally,

we create a new canvas and draw the histogram.

3

http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TAttFill.html


C]°Temperature [
-20 -10 0 10 20 30 40

E
nt

rie
s

0

2

4

6

8

10

12

14
Temperature on 23/8

Figure 1: Histogram showing the temperature on August 23:rd every year

since 1722.

TH1I* hist = new TH1I("temperature", "Temperature;Temperature

[#circC];Entries", 300, -20, 40);

hist->SetFillColor(kRed + 1);

hist->Fill(-3.2); //Increment the bin corresponding to -3.2 C

double mean = hist->GetMean(); //The mean of the distribution

double stdev = hist->GetRMS(); //The standard deviation

TCanvas* can = new TCanvas();

hist->Draw();

3.2 The temperature for every day of the year

If we can create a histogram showing the temperature of one day, why not

do it for every day of the year? Uncomment the tempPerDay function and

try it out! Figure 2 shows how the mean temperature varies throughout the

year. Of course, just knowing the mean is not all that interesting. In order

to make useful predictions, we also need to know the standard deviation of

the temperature of each day.

4



• Plot the mean temperature of each day of the year.

• Use error bars in order to visualize the standard deviation.

Day of year
50 100 150 200 250 300 350

C
]

°
Te

m
pe

ra
tu

re
 [

-10

-5

0

5

10

15

20

Figure 2: Histogram showing the mean temperature on each day of the year.

Hints The example code shows how to loop over every bin in a histogram

and explicitly set the contents and error of each one. In ROOT, bin 0 is the

under�ow bin. This bin is not shown on plots. Bins 1 to nBins are what you

see when drawing the histogram. Finally, bin nBins+ 1 is the over�ow bin.

for(int bin = 1; bin <= hist->GetNbinsX(); ++bin) {

hist->SetBinContent(bin, 5);

hist->SetBinError(bin, sqrt(5.));

}

3.3 The warmest and coldest day of each year

In Sweden, summers and cold and winters are colder. But which day is

actually the coldest? Implement the hotCold function and �nd out! Figure 3

5



shows when the warmest and coldest days have typically occurred during

the last few hundred years. To make things more interesting, note that each

dataset may contain readings from di�erent places (for example, the Uppsala

dataset has a few readings from Stockholm). If you use the Uppsala dataset,

write your function such that all readings from a region other than Uppsala

are ignored.

• Create histograms of the warmest and coldest day each year.

• Predict when the warmest and coldest day is most likely to occur.

• Can you show both histograms in the same plot?

• Can you make a �t function that �wraps around� as in Figure 3?

Day of year
50 100 150 200 250 300 350

E
nt

rie
s

0

1

2

3

4

5

6

7

8

9
Warmest day

Coldest day

Figure 3: The plot shows how often a given day of the year was the warmest

or coldest for every year since 1722. Lines show Gaussian �ts of the distri-

butions.

Hints The mean of a histogram could be obtained with the GetMean mem-

ber function. A more fancy, and sometimes more useful, way of extracting

6



information from a distribution is to �t a mathematical model to it. The ex-

ample code shows how to de�ne a custom function (a Gaussian in this case)

and then �t that function to a distribution contained in a histogram. The

function is de�ned in the range [1, 366] and takes three parameters. They are

(as de�ned in the Gaussian function) an amplitude, a mean and a standard

deviation. The meaning of the parameters passed to the Fit function is to

�t quietly (Q), to not automatically plot the function when the histogram

is plotted (0) and to �t only within the range in which the function is de-

�ned (R). After �tting, we print the mean of the Gaussian as well as the

uncertainty of that mean. Finally, the example shows how to create a legend

containing two histograms and then draw those histograms in the same plot.

double Gaussian(double* x, double* par) { //A custom function

return par[0]*exp(-0.5*(x[0]*x[0] - 2*x[0]*par[1] +

par[1]*par[1])/(par[2]*par[2]));

}

TF1* func = new TF1("Gaussian", Gaussian, 1, 366, 3);

func->SetParameters(5, 200, 50); //Starting values for fitting

hist->Fit(func, "Q0R");

cout << "The mean is " << func->GetParameter(1) << endl;

cout << "Its uncertainty is " << func->GetParError(1) << endl;

TLegend *leg = new TLegend(0.65, 0.75, 0.92, 0.92, "", "NDC");

leg->SetFillStyle(0); //Hollow fill (transparent)

leg->SetBorderSize(0); //Get rid of the border

leg->AddEntry(hist, "", "F"); //Use object title, draw fill

leg->AddEntry(anotherHist, "A title", "F"); //Use custom title

hist->Draw();

anotherHist->Draw("SAME"); //Draw on top of the existing plot

leg->Draw(); //Legends are automatically drawn with "SAME"

3.4 The mean temperature of each year

SMHI has produced some very nice plots that show the mean temperature of

each year since the temperature measurement started. An example is shown

in Figure 4 (a). Can we make something similar in ROOT? Of course we can.

Figure 4 (b) shows one such attempt. Try to make your own plot with the

tempPerYear function. The function accepts one argument. This is a future

7

http://root.cern.ch/root/html/TF1.html
http://root.cern.ch/root/html/TLegend.html


(or past) year for which to predict the temperature using extrapolation.

• Plot the mean temperature of each year in your dataset.

• Fit the data with a model of your choice. Use the model to predict

the temperature of a given year in the future. Can you draw any

conclusions when it comes to global warming?

• Can you plot the deviation from the average as in Figure 4?

• Can you plot the moving averages?

(a)

Year
1750 1800 1850 1900 1950 2000

C
]

°
Te

m
pe

ra
tu

re
 [

2

3

4

5

6

7

8

9

(b)

Figure 4: The plots show the mean temperature of each year since 1722.

Positive and negative deviations from the mean are indicated by di�erent

colors. Lines show moving averages. Both a plot from SMHI (a) and one

from ROOT (b) are shown.

8



Hints The neat deviation-from-the-average e�ect is actually obtained by

plotting several histograms in di�erent colors on top of each other. Try it!

A moving average can be done using, for example, a graph. Add one point

to the graph for every few years in the histogram. The y-value of the point
should be the average of the surrounding years. Then plot the graph with

a smooth line between the points. The example shows how to create a new

graph and �ll it with one point for each bin in a histogram. The call to

Expand increases the capacity of the graph by 100 if adding a new point

would make the graph run out of space. Finally, the example shows how to

draw the graph (on top of the current plot) with a smooth curve.

TGraph* graph = new TGraph();

for(int bin = 1; bin < hist->GetNbinsX(); ++bin) {

graph->Expand(graph->GetN() + 1, 100);

graph->SetPoint(graph->GetN(), hist->GetBinCenter(bin),

hist->GetBinContent(bin));

}

graph->Draw("SAME C");

4 Code skeleton

The code skeleton contains a �le called rootlogon.C. If ROOT is started

from a directory that contains a rootlogon.C, it will execute all the state-

ments in the rootlogon function automatically. This is a convenient way

to set up the environment, e.g. by executing some style scripts that deter-

mine how plots should look. The provided rootlogon.C makes some basic

changes to the default plots. The code skeleton also comes with a class

called tempTrender and a script called project.cpp. These �les are com-

piled and loaded automatically by the rootlogon function. As you can see

by looking at the �les, they are almost empty. It is your job to implement

the tempTrender class and any other classes or functions that you might

need. The datasets from SMHI are in the directory called datasets. Each

group should pick a dataset (or a couple) to work with. Good luck with the

project!

9

http://root.cern.ch/root/html/TLegend.html

	Introduction
	Project description
	Example results
	The temperature of a given day
	The temperature for every day of the year
	The warmest and coldest day of each year
	The mean temperature of each year

	Code skeleton

