
Florido Paganelli Programming Languages 1/88Lecture 3

Programming Languages

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01 2016

Florido Paganelli Programming Languages 2/88Lecture 3

Outline

What is programming

Binary system

Accessing memory

What are programming languages

Understanding compilation and execution

Comparison between Bash, C, C++, Python

Additional material

Florido Paganelli Programming Languages 3/88Lecture 3

General concepts in
programming

Programming is the process of writing a
computer program, that is, translating an idea
into something that can be executed by a
computer.

This translation happens in several steps and,
like a recipe for cooking a meal, one needs to
understand the ingredients and how to mix/cook
them.

The idea usually takes the form on an algorithm.

Florido Paganelli Programming Languages 4/88Lecture 3

Ingredients of programming:
What is an algorithm?

A finite sequence of instructions to
carry out a task or solve a problem.

An algorithm can be written in natural
language or in mathematical terms.

The term is derived from the name of the
Islamic scholar Al-Khwarizmi.

Florido Paganelli Programming Languages 5/88Lecture 3

Ingredients of programming:
Code

Code or source code

Is a structured description of an algorithm, it
determines what a program will do

It is usually stored in digital format on one or
more files

The description is usually done via a
programming language

It is called language because one must respect
several grammar rules, like in spoken or written
natural human languages.

Florido Paganelli Programming Languages 6/88Lecture 3

From algorithm to code

The translation of an algorithm into code, using
a programming language, is called implementation

The transition between an algorithm and and its
implementation can have an intermediate
representation that is still human readable, which
mixes natural language and programming language.
This is often called pseudo-code.

Writing pseudo-code is one of the best techniques to
implement an algorithm, although can be time
consuming.

Florido Paganelli Programming Languages 7/88Lecture 3

What is source code like?

It is a list, a sequence of statements, also
called lines of code.

These statements usually come in a defined
structure, that is, an order in which one
should write them

It can be stored digitally in one or more text
files

It can refer to other programs or program
components, often called libraries

Florido Paganelli Programming Languages 8/88Lecture 3

Ingredients of programming:
Code example

Code might look weird at first. But there is a strive
to make it human-readable. Consider the following
example of C code, what do you think it does?

printf ("%s \n", "Hello World!");

Florido Paganelli Programming Languages 9/88Lecture 3

Ingredients of programming:
Code example

Yes, it prints on screen the text string

Hello World!

Let's analyze the components of the language statement:

printf ();"%s \n", "Hello World!"

Issue a command:
function or procedure printf();

Command argument:
two function arguments
1.Formatting information:

● “%s \n” means “I want you to print a
string (%s) and then go to next line (\n)

2.Content information:
“Hello World!” is the actual thing to
print.

Grammar syntax:
<function name>(<argument or parameter>);

WARNING:
NOT A MATHEMATICAL
FUNCTION!!!!

Florido Paganelli Programming Languages 10/88Lecture 3

How humans count:
the decimal system as a language

Our way of counting numbers is based on the decimal notation.
It is called decimal because is is based on 10 basic symbols:

0 1 2 3 4 5 6 7 8 9

The decimal notation is positional. The position represents
the powers of the base (that is, the number of basic simbols)

Each position starting from the rightmost represents how many times
a base elevated at a given power is multiplied by itself. The powers
belong to the set of Natural numbers, starting from 0.

Example:
2048 = 2*103 + 0*102 + 4*101+ 8*100 =
 2*1000 + 0*100 + 4*10 + 8*1 =
 2000 + 0 + 40 + 8 = 2048

Florido Paganelli Programming Languages 11/88Lecture 3

How computers count:
the binary system as a language

In a computer everything is based on the binary system.
That means, the number of symbols of the binary notation

is just 2:
0,1

The binary notation is positional. The position
represents the powers of the base exactly like the decimal
one. The difference is that we can only multiply by 0 or 1.

Example:
1101 = 1*23 + 1*22 + 0*21 + 1*20 =
 1*8 + 1*4 + 0*2 + 1*1 =
 8 + 4 + 0 + 1 = 12 (decimal!)

Florido Paganelli Programming Languages 12/88Lecture 3

Why binary?

Digital circuits are based on mapping voltage to information

Measuring voltage can be error-prone, so one must minimize
the error

Years of engineering studies showed that the safest choice is
either to have three voltage states or two

Two proved to be safest and easiest to handle as the number
of circuits on a circuit board grows: they interfere with each
other! (magnetic fields etc)

Modern computing sets the voltage difference to be ∓5V

Mapping: ∓5V = 0, 0V = 1 (yeah, I know, misleading. But
there are practical reasons for it. We don't have to care.)

Florido Paganelli Programming Languages 13/88Lecture 3

Information as a binary mapping:
Memory, Bits and Bytes

The fundamental unit of measure of information is the bit (binary digit):
either 0 or 1.

Assume a fundamental memory component of a circuit can store exactly one
bit. That means, that component can be used to represent two decimal
integer values: 0 or 1, depending on its voltage status.

Two memory components can represent two bits. If we consider them
ordered as in the binary notation, we can represent up to four integer values:
00= 0 , 01 = 1, 10 = 2, 11 = 3. That is, with 2 bits we can represent 22

different values. This can be generalized, n bits represent 2n values.

For historical reasons, an ordered group of 8 bit is used as the fundamental
unit of measure of computer memory. This is called a byte.

How many different integer values can a byte (8 bit) represent?

The range is 00000000 – 11111111, We can represent numbers from 0 to 255 (256 numbers in
total)

In other words, 28 = 256

Florido Paganelli Programming Languages 14/88Lecture 3

Information as a binary mapping:
Memory, Bits and Bytes

If I want to represent at least 1000 values,

I need an integer i such that 2i~1000.
For example for i=10, 210=1024 values,
that is, 10 bits can represent 1024 values.

In modern computer architectures, the 32bit and 64bit buzzword that
you frequently hear refers to the size of the CPU registers, that is,
where the processor copies information from the memory to be
processed. I will present it later.

A 32bit machine can contain in its registers up to 232 different values.

Note: 2⁸ * 2⁸ * 2⁸ * 2⁸ = 24*⁸ = 232 : A CPU register is
made out of 4 bytes!

A 64bit machine can contain in its registers up to 264 different values.

In a 64 bit machine a register is made out of 8 bytes.

Florido Paganelli Programming Languages 15/88Lecture 3

Digital circuits are discrete
(countable)

Digitalization is the process of transforming what is
continuous into something discrete with electronic devices.

A dreadful consequence of having a finite set of countable
memory components representing information is that
there is a finite set of numbers we can represent.

What happens when the result of an operation exceeds
the finite representation space?

How do one represents negative numbers?

How do we represent fractions/irrational
numbers/periodic numbers/complex numbers?

How do we represent the concept of infinity?

Florido Paganelli Programming Languages 16/88Lecture 3

CPU components

ALU
Arithmetical
 and Logical
operations

CU
Control Unit

Processing of
 the instruction flow

Registers
Temporary
workspace

Program Counter

Status Register

C Z S N I

CPU
Central

Processing
Unit

Communication with RAM and other devices
 via BUS

□□□□□□□□□
□□□□□□□□□

□□□□□□□□□

Instruction Register□□□□□□□□□

□□□□□□□□□

□□□□□□□□□

Florido Paganelli Programming Languages 17/88Lecture 3

Addition

Limitations of finite representation:
addition

Carry overflow and register reset:
imagine we have only 3 bit registers
 (numbers from 000 to 111):

111 + 001 = 1000 = 1 carry and 000
but: our registers can only contain 000.

Need to keep info about carry somewhere
(usually special carry bit in the arithmetic
circuitry).

3 bits

0 0 01

3 bits

0 0 1

3 bits

1 1 1
+ =

Carry?

Florido Paganelli Programming Languages 18/88Lecture 3

Multiplication

Limitations of finite representation
Multiplication requires double the size:

111 * 111 = 110001 : it's 6 bits!
Need to manage multiplications in a special way.

Property: multiplication/division by 2 is a
“shift left” (multiplication)
or “shift right” (division with no remainder)

3 bits

1 1 1

3 bits

1 1 1

3 least significant bits

0 0 11 1 0

3 most significant bits* =

Multiplication

Decimal: 3

0 1 1

Decimal: 2

0 1 0

3 least significant bits
Decimal value: 6

1 1 00 0 0

3 most significant bits
Decimal value: 0

* =

Florido Paganelli Programming Languages 19/88Lecture 3

Limitations of finite representation

Circuits for computation are different from
our way of counting:
combinations of adders and shifters to
achieve all operations

In general, one must be very careful
when doing calculations at the edge
of the possible representations:

Digitalization of continuous data is
loss of information.

Florido Paganelli Programming Languages 20/88Lecture 3

Accessing Memory

Memory size

Addressing memory: pointers

Stack

Heap

Relative relocation

Florido Paganelli Programming Languages 21/88Lecture 3

Addressing memory (RAM)

Computer memory is divided in a
certain number of locations.

A physical memory element at a
specific location is like a register, and
has a size in bit. Usually is 8 bits, a
byte.

A location is a memory space
identified by a
memory address

A memory address is a in integer
number.

This number is usually called pointer (
→), as it points to a memory location.

→0

→1

→2

→4GB

→...

Florido Paganelli Programming Languages 22/88Lecture 3

Addressing memory and size:
bits and bytes

The size of a RAM memory bank tells how
many memory locations can be pointed or
referenced within that bank of memory.

This size is measured in bytes.

Remember: 1 byte is made out of 8 bits

1024 bytes are called a Kilobyte. Often
noted as Kb or kb or KB (unfortunately
producers never agreed on the notation).
We will use KB.

Florido Paganelli Programming Languages 23/88Lecture 3

Memory size
Conversion to the different orders is done by
dividing/multiplying for 1024 in decimal notation. Examples:

1 KiloByte = 1 KB = 1024 Bytes
1 MegaByte = 1 MB =
1024 KB =
1 048 576 Bytes
1 GigaByte = 1 GB =
1024 MB =
1 048 576 KB =
1 073 741 824 Bytes = about 1 Million bytes.

A 4 GB memory bank contains
4*1 GB =
4*1024 MB = 4096 MB =
4*1048576 KB = 4194304 KB =
4*1073741824 Bytes = 4 294 967 296 Bytes

Florido Paganelli Programming Languages 24/88Lecture 3

Addressing memory: pointers
If one wants to address each and every
byte in a memory of 4GB, she will need
at least 32bits register:

4GB = 4 millions memory locations =
4096MB =
4 294 967 296 = 2³²

The number contained in the register is
usually called a pointer, as it points to a
memory location

However, things are not that easy. Not
all the represented numbers can be
used for referencing memory, see:
http://en.wikipedia.org/wiki/3_GB_barrier

We can anyway assume that the accessible
memory space depends on the computer
architecture, i.e. a 64bit machine can access
2⁶⁴ memory locations.

→0

→1

→2

→4GB

→...

32 bits register
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

http://en.wikipedia.org/wiki/3_GB_barrier

Florido Paganelli Programming Languages 25/88Lecture 3

Addressing memory:
the compromise

Observe the following:

If I have a big memory, I want a big pointer (64 bit)

I also want to store memory pointers in memory

Each pointer uses 64bit

Negative consequences:

The same application compiled for using 32bit and 64bit memory will be
bigger, or have higher memory requirements, when using 64bit pointer.

Modern 64bit computers just need double the memory of the old
32bit :(

What is the only benefit?

Bigger memory space

We can actually memorize double the things, provided that we are careful in
specifying that we can pack them in a 64 bit space (compilers can do this,
but at a cost)

Precision:

We can represent more integer numbers

non integer numbers can be more close to the theoretical representation
(reducing the approximation error)

Florido Paganelli Programming Languages 26/88Lecture 3

Heap

Stack and Heap
Modern programming saves you from specifying
the exact pointer location. The memory is
represented as a logical memory available to a
programmer.
It is modelled like partitioned in two sets:

Stack: Managed by a tool called compiler.

Memory is allocated and deallocated (freed)
automatically by the compiler.

It usually only survives for a short term.

Function recursion uses that heavily.

Heap: Managed by developer directly using
system libraries functions.

developer allocates and deallocates memory by
writing explicit programming language statements.

It can survive a whole program if the
developer forgets to deallocate it!!

The use of these will be clearer during the
tutorials.

→0

→1

→2

Stack

Florido Paganelli Programming Languages 27/88Lecture 3

From binary to
programming languages

Florido Paganelli Programming Languages 28/88Lecture 3

Binary as machine language

A machine only has the binary alphabet to describe
things. All that moves between the CPU and the
Memory is chunks of memory of the maximum size as
the number of bits given by the architecture (i.e. 64
bits)

These memory chunks can be either data or
instructions, that is, words of the machine language.

When an instruction is copied from RAM to a special
registry inside the CPU, the Instruction Register,
this will be executed, the operation that it represents
will be carried on.

Florido Paganelli Programming Languages 29/88Lecture 3

Machine Language: Binary Code
A computer instruction is a sequence of bits, that is, zeroes and ones.

A binary instruction is also called opcode, Operation Code

For simplicity, each instruction corresponds to a human-readable string,
called Assembly Instruction

The following table shows shows examples of instructions, where the
letters identified by dollars denote an operand.

Operands are not values, but identify one Processor Register.
Processor registers are small memory inside the CPU itself that the CPU
uses to work; each has a number that identifies it.
A register contains the actual values that the operation will use.

Instruction Syntax Operation
add 100000 ArithLog $d = $s + $t
addu 100001 ArithLog $d = $s + $t
and 100100 ArithLog $d = $s & $t

Opcode/Functi
on

$d ID of destination
register

$s ID of source
register

$t ID of second
source register

Florido Paganelli Programming Languages 30/88Lecture 3

CPU components

ALU
Arithmetical
 and Logical
operations

CU
Control Unit

Processing of
 the instruction flow

Registers
Temporary
workspace

Program Counter

Status Register

C Z S N I

CPU
Central

Processing
Unit

Communication with RAM and other devices
 via BUS

□□□□□□□□□
□□□□□□□□□

□□□□□□□□□

Instruction Register□□□□□□□□□

□□□□□□□□□

□□□□□□□□□

Florido Paganelli Programming Languages 31/88Lecture 3

Machine Language: Binary Code

Instruction Syntax Operation
add 100000 $d = $s + $t

100001 $d = $s + $t
and 100100 $d = $s & $t

Opcode/Funct
ion

ArithLog
addu ArithLog

ArithLog

$d ID of destination
register

$s ID of source
register

$t ID of second
source register

General
Purpose
Registers

Instruction Register

Florido Paganelli Programming Languages 32/88Lecture 3

Programming languages:
A brief history

Modern classification of programming languages is based on generations. As
generation increases, the languages are closer to the human way of expressing
concepts.

1st generation. Machine code language. This includes punchboards and
binary code. Machine dependent.

2nd generation. Assembly or instruction-based languages. Still used in
embedded programming, but through 3rd generation ones. Machine
dependent. Hard to use for complex things.

3rd generation. Also called High-Level programming languages. Mostly use
English to describe commands. Machine independent. General Purpose:
you can use them for EVERYTHING.
These include: C, C++, C#, Java, Javascript, Python, Bash, PHP, Pascal,
Fortran...

4th generation. Domain specific languages. Report or Form generator, or
Data manipulation. Examples: Mathematica, Matlab, SPSS, R (statistics).
Targeted to a specific set of tasks.

5th generation. Mathematical or logical languages. Solving problem by
specifying constraints, without focusing on the algorithm. Mainly used in
artificial intelligence research. Examples: Prolog, NetLogo. Very narrow scope.

Florido Paganelli Programming Languages 33/88Lecture 3

1st generation: Machine Language

CPU

Florido Paganelli Programming Languages 34/88Lecture 3

2nd generation:
Assembly Code

Assembler

CPU

Florido Paganelli Programming Languages 35/88Lecture 3

2nd generation:
Assembly Code and Microcode

X68000
Assembler

Assembler

x86
Assembler

Motorola Intel

Other Architecure

Not Portable!

CPU CPU

CPU

Florido Paganelli Programming Languages 36/88Lecture 3

3rd generation: Human-oriented

Algorithm oriented: the user translates an algorithm into
language commands

Introduces programming paradigms:

Imperative

Object Oriented

Functional

… more!

Introduces various translation to machine language methods:

Compiled

Interpreted

Bytecode interpreted

Florido Paganelli Programming Languages 37/88Lecture 3

Imperative languages
Programming style that describes
computation in terms of a program
state and statements that change the
program state.

Adheres to the separation of code and
data principle.

Examples: C, FORTRAN, Python, Bash

Remember printf ("%s \n", "Hello World!"); ?

Hello World!

Code

Data

Florido Paganelli Programming Languages 38/88Lecture 3

Object-oriented languages
A computer program is a collection of objects that act
on each other.

Each object is capable of sending and receiving
messages and processing data. Each object is
independent.

An object is a ‘black box’ which sends and receives
messages, and consists of code (computer instructions)
and data (information which these instructions operate
on).

Breaks the separation of code and data principle.

Examples: Java, C++, Python

Data

Data
Data

Data

Code
Code

Code
Code

Object A
Data

Data
Data

Object B

Messages

Florido Paganelli Programming Languages 39/88Lecture 3

Ingredients of programming:
Data

Often provided by the user

NOT code, but used by code to do things

Carries information, most likely understandable by a
scientist.

Input data: provided in input to the code to process
information.

Example: the formatting information "%s \n", and the text
string ”Hello World!”

Output data: the result of the code execution, that will be
generated as output from the code execution.

Example: the output string Hello World!

Florido Paganelli Programming Languages 40/88Lecture 3

Separation of Code and Data
principle

Code is information about logic, arithmetics and
algorithms.

One can think of it like a mathematical function, that defines a
domain and co-domain in generic terms.

Data is information that is to be read, processed,
written.

Input data should be left untouched and not modified.
Think about is as a science fact or empirical/experimental data.

One does modify it in memory while running a program, but the
changes should never be written back to the original data (would
pollute science facts!)

Output Data is usually the result of something code did on it.
For ease of use, it might be represented the same way as Input
Data.

Florido Paganelli Programming Languages 41/88Lecture 3

Separation of Code and Data
Mathematical example

Goal: Given a set of positive integer numbers, give all
the possible sums of each pair of such numbers
(including the a number and self, i.e. (a + a)).

Input data:

The set of numbers I={1,2,3}.

algorithm using math syntax and natural language:

Output data:

O={2,3,4,5,6}

1.Define : sums(x , y)=x+ y ; x , y∈ℕ

2. Define : pairsums(I)=n∈ℕsuchthat sums(i , j)=n , for all i , j∈I
3.Compute : pairsums({1,2,3})

Florido Paganelli Programming Languages 42/88Lecture 3

Flow chart like notation

Document
human readable

i.e. text file, code...

Process
something running/executed in a computer

Binary file
NOT human readable

i.e. executable

Florido Paganelli Programming Languages 43/88Lecture 3

The information flow
Some (crazy?)
representation of the
 output data

Code

Process

Algorithm Experimental
Data

Computers
world

Real
world

digitalization

Florido Paganelli Programming Languages 44/88Lecture 3

The information flow
Some (crazy?)
representation of the
 output data

Code

Algorithm Experimental
Data

Execution
Computers

world

Real
world

digitalization

Process
Compilation

or
interpretation

Florido Paganelli Programming Languages 45/88Lecture 3

Some (crazy?)
representation of the
 output data

The information flow

Code

Algorithm Experimental
Data

Computers
world

Real
world

digitalization

Execution

ProcessCompilation
or

interpretation

Florido Paganelli Programming Languages 46/88Lecture 3

The information flow

Code

Real
world

Computers
worldExecution

digitalization

Algorithm Experimental
Data

Some (crazy?)
representation of the
 output data

Feedback,
iteration

Compilation
or

interpretation

Process

Florido Paganelli Programming Languages 47/88Lecture 3

The information flow

Code

Process

Real
world

Computers
world

Algorithm Experimental
Data

Some (crazy?)
representation of the
 output data

digitalization

MAY CAUSE LOSS OF
INFORMATION!!

Florido Paganelli Programming Languages 48/88Lecture 3

From code to machine language
A process is a program
that is executing in a computer.

To be executed by a computer, a program
must be written in machine language.

Machine language is binary code:

Process

 How does
one go from

code to
machine

language?

Florido Paganelli Programming Languages 49/88Lecture 3

From code to machine language
The translation of code written in a
certain programming language is
called compilation.

Is performed by a special program called
the compiler.

The first step of compilation transforms
Code into Assembly Code.

Code Compilation Assembly

Compiler

#include <stdlib.h>
int main(int argc,

Florido Paganelli Programming Languages 50/88Lecture 3

Assembly

From code to machine language
The translation of assembly code to executable
code or machine language is called linking.

The Linker:

Binds the software to specific Operating System
functions, the system libraries

Adds external libraries to the written code (i.e.
scientific libraries for advanced computation)

Translates the Assembly code into machine language.

The result of linking is also called binary file

Code Compilation
Linking

Binary
file

executable code
machine languageLinker/

Compiler

Compiler

Software
Libraries

OS
Libraries

#include <stdlib.h>
int main(int argc,

Florido Paganelli Programming Languages 51/88Lecture 3

From code to machine language

Compilation

The term compilation is commonly used
for both the process of Compiling and
Linking, as it is very hard to decouple
them in practice.

Code Compilation Assembly Binary
file

Compiler

Linking

Linker/
Compiler

Software
Libraries

OS
Libraries

#include <stdlib.h>
int main(int argc,

Florido Paganelli Programming Languages 52/88Lecture 3

Steps to compilation

Scientist write their own code, also called
source code.

Source code is provided as Input data to the
compiler.

The compiler process runs, compiles and links the
code and then generates compiled and linked
binary code.

The binary code is written to a file as Output data
of the compilation process, the result of the
compilation process is hence a binary file.

Florido Paganelli Programming Languages 53/88Lecture 3

Execution

Execution of a binary file is the task of

1) Loading it into the computer memory (RAM)

2) Tell the processor (CPU) to start processing the
instructions just loaded in memory

In modern machines this is simplified by

touching an app icon (phones)

double clicking on an icon (most of graphical interfaces)

explicitly writing the name of the program to run using
command line interfaces (e.g. BASH).

Florido Paganelli Programming Languages 54/88Lecture 3

Execution (runtime/dynamic)

Memory Relocation
Compilation (static)

Code Compilation Assembly Binary
file

Compiler

Linking

Linker/
Compiler

Software
Libraries

→0

→1

→2

→0

→1

→2

Variable A

Variable B

Pointer C

A,→0

B,→1

C,→2

Mybinary.bin

Mybinary.bin
process

OS
Libraries

→837015

→837017

→837019

OS
Libraries

OSlib(A, →0)

OSlib(B, →1)

OSlib(C, →2)

Dynamic relocation
Real memory

 addresses assigned
by OS libraries

Memory request
in the form
of variables
or pointers

Static relocation:
Relative/relocatable

logical memory
 addresses created

by the linker

Association between
variable names
and pointers to

Logical memory
addresses

Florido Paganelli Programming Languages 55/88Lecture 3

Compilation workflow

Execution

Real
world

Computers
world

digitalization

Algorithm Something a
(normal) human

cannot
understand.

Compiler
Binary file

Compiler
process

Florido Paganelli Programming Languages 56/88Lecture 3

Compiled languages
Classic programming languages like C or C++ are said to be
compiled as the creation of an executable works as shown in the
previous slides.

The developer will have to

1) Compile her source code
Example: compile a C++ source file and generate a binary file
mycompiledcode.bin:
g++ ­o mycompiledcode.bin mysourcecode.cpp

 run or execute the binary code to see his program in action.
Example: run mycompiledcode.bin binary file
./mycompiledcode.bin

Note: mycompiledcode.bin is an output file. g++ and
mycompiledcode.bin are binary files. g++ is a program that
generates binary files as its output.

g++
binary

mycompiled
code.bin=

g++
process

Florido Paganelli Programming Languages 57/88Lecture 3

Compilation workflow: C++

Execution

Real
world

Computers
world

digitalization

Algorithm Mycompiledcode.bin
binary is not easy to

read for humans.

g++
Binary file

g++
process

mycompiled
code.bin

=
mycompiled

code.bin

Mycompiledcode.bin
process

1
2

Florido Paganelli Programming Languages 58/88Lecture 3

Compilation workflow: C++

Execution

Real
world

Computers
world

digitalization

Algorithm Mycompiledcode.bin
binary is not easy to

read for humans.

g++
Binary file

g++
process

mycompiled
code.bin

1

Florido Paganelli Programming Languages 59/88Lecture 3

Compilation workflow: C++

Execution

Real
world

Computers
world

digitalization

Algorithm Mycompiledcode.bin
binary is not easy to

read for humans.

g++
Binary file

g++
process

mycompiled
code.bin

=
mycompiled

code.bin

Mycompiledcode.bin
process

1
2

Florido Paganelli Programming Languages 60/88Lecture 3

Interpreted languages
Some languages like Python or PHP have another approach, where
compilation is done on the fly by an helper compiler process. In this case
the compiler process is called interpreter.

The developer can just write a line of code inside the interpreter command
line interface and this is immediately executed. Compilation is transparent.

Example: Write “Hello World” in Python:

 Run the python interpreter
python
Python 2.4.3 (#1, Jun 18 2012, 09:40:07)
[GCC 4.1.2 20080704 (Red Hat 4.1.2­52)] on linux2
Type "help", "copyright", "credits" or "license" for more information.

 Execute a python command
>>> print "hello world"
hello world
>>>

The source code in this case is a list of commands to be passed to the
interpreter to be executed.
Example:
python mysourcecode.py

Question: what about BASH from the Tutorials? Discuss.

Florido Paganelli Programming Languages 61/88Lecture 3

Steps to interpretation: Python

Real
world

Computers
world

digitalization

Algorithm

Python
interpreter

binary

No binary output file in intepreted
languages, not needed.
A program cannot run without
the interpreter.

Execution

Hello
World!

process
1

Florido Paganelli Programming Languages 62/88Lecture 3

Compiled VS Intepreted
Compiled Interpreted

Performance High Low

Coding Complexity High Low

Portability Low High

Learning Curve High Low

Performance Tuning Very High Very Low

Capacity requirements Very Low Very High

Debugging features Medium (depends on
platform/compiler)

High

Compiled, use if:
● Need performance on intensive

calculations
● Require specific technologies
● Small devices with limited memory

or CPU

Intepreted, use if:
● Need to quickly create a prototype
● Require easy portability on different

platforms
● Only on powerful computers

Florido Paganelli Programming Languages 63/88Lecture 3

Compiled vs Interpreted
in scientific computation

Compiled languages are used when in need of
performance, precision or optimization:

machine-consuming tasks that require lots of memory and
time, to minimize memory and cpu consumption:

Intensive computation (when it takes days or weeks to obtain a
result)

Complex simulation models (montecarlo, data reconstruction)

Parallel computing

Dedicated hardware tasks:
To take such hardware features to the limit

Dedicated hardware with limited resources:
Detectors

Mobile phones

Embedded devices

Florido Paganelli Programming Languages 64/88Lecture 3

Compiled vs Interpreted
in scientific computation

Interpreted languages are used for
tedious tasks that are not going to be
executed too frequently, and quick
development:

Creation of quick proof-of-concept prototypes

Submission of multiple computing jobs with
multiple parameters

Streamlining/orchestration of complex
computing tasks carried on with compiled
languages binary code

Scripts that cannot be easily written in BASH.

Florido Paganelli Programming Languages 65/88Lecture 3

Comparison between languages
and when they work best

Every language is usually designed for a
specific purpose, and then extended to
serve other purposes.

Sometimes a language is to tightly close to
its designed purpose that no extension really
changes a programmer way of thinking

Sometimes the practical use of a language
goes very very far from the purpose of
which it was designed

Florido Paganelli Programming Languages 66/88Lecture 3

Bash
Features:

Interpreted

Runs commands, executables

Imperative paradigm

Not explicitly typed

No memory pointers: only
environment

Pros:

Use existing commands
to do tasks

Lots of community
experience

Very low learning curve

Very intuitive approach

Preferred use:

Scripting

Automation of
command tasks

Combine several
commands

Cons:

Not portable; code depends on installed
software

Lack of types might cause unexpected
results

No memory management, only
environment variables might cause
scope issues: all variables are global!

Not rich in native datastructures, that are
hard to use and very rarely used in
practice

Florido Paganelli Programming Languages 67/88Lecture 3

Bash example
Reading and printing a file to screen – executing the script

#!/bin/bash
script readgames.sh
#

DATAFOLDER='../../data'
FILECONTENTS=$(cat ${DATAFOLDER}/nintendowiigames.xml)
echo "$FILECONTENTS"

pflorido@tjatte:~> chmod +x ./readgames.sh
pflorido@tjatte:~> ./readgames.sh
<?xml version="1.0" encoding="UTF­8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

Make the script executable and execute it:1

Florido Paganelli Programming Languages 68/88Lecture 3

C
Features:

Compiled

Imperative paradigm

Functions

Types and type creation

Memory Pointers

Based on standards

Pros:

Very efficient

Can directly use Assembly

Lots of community experience

Good debugging tools

Control on the code
preprocessor (for efficiency)

Preferred use:

System development

Embedded devices

Low-level coding, i.e.
hardware drivers

Performance

Cons:

Requires deep knowledge of pointers and
memory handling – developer has to free
memory by herself

Has high learning curve

No object oriented approach: if new features
need to be added, code needs to be
rewritten or revised

Hard to foresee runtime errors at compile
time

Control on the code preprocessor (hard to
debug and understand)

Florido Paganelli Programming Languages 69/88Lecture 3

C example
Reading and printing a file to screen

/*
 * readgames.c
 *
 * Copyleft 2016 Florido Paganelli<florido.paganelli@hep.lu.se>
 *
 */

// standard library to allocate memory
#include <stdlib.h>
// input/output library
#include <stdio.h>

int main(int argc, char **argv)
{
 // a sequence of chars will contain the file

char *filecontents;
 // C doesn't automatically know the size of a file
 long input_file_size;
 // opening the file nintendowiigames.xml for reading
 FILE * input_file = fopen("../../data/nintendowiigames.xml", "rb");
 // Calculating the size of the file:
 // reach the end of the file
 fseek(input_file, 0, SEEK_END);
 // get the position of the pointer: will give us how big is the file
 input_file_size = ftell(input_file);
 // go back at the beginning of the file
 rewind(input_file);
 // allocate memory for file contents
 filecontents = malloc(input_file_size * (sizeof(char)));
 // read the file regardless of newlines
 fread(filecontents, sizeof(char), input_file_size, input_file);
 // close the file
 fclose(input_file);

 //print the content of the variable
 printf("%s",filecontents);

return 0;
}

Florido Paganelli Programming Languages 70/88Lecture 3

C example
Reading and printing a file to screen – compile and execute

pflorido@tjatte:~> gcc -o readgames.c.bin readgames.c

pflorido@tjatte:~> ./readgames.c.bin
<?xml version="1.0" encoding="UTF­8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

Compile:

Execute (the object file is already executable!):

1

2

Florido Paganelli Programming Languages 71/88Lecture 3

C++
Features:

Compiled

Imperative paradigm

Object oriented paradigm

Types and type creation

Templating

Memory Pointers

Based on standards

Pros:

Very efficient

Empowers C with objects, allowing
extending existing code

Can directly use Assembly

Lots of community experience

Good debugging tools

Good coding environments

Control on the code preprocessor (for
efficiency)

Preferred use:

System development

Embedded devices

Low-level coding, i.e.
hardware drivers

Performance

Cons:

Requires deep knowledge of pointers
and memory handling – developer has
to free memory by herself

Has high learning curve

Not suitable for fast prototyping

Hard to foresee runtime errors at
compile time

Control on the code preprocessor (hard
to debug and understand

Florido Paganelli Programming Languages 72/88Lecture 3

C++ example
Reading and printing a file to screen/*

 * readgames.cpp
 *
 * Copyleft 2016 Florido Paganelli <florido.paganelli@hep.lu.se>
 *
 */

// library for basic input/output
#include <iostream>
// library for files stream
#include <fstream>
// library for strings stream
#include <sstream>
// library for strings
#include <string>
// if not specified, the functions belong to the std namespace
using namespace std;

int main(int argc, char **argv)
{
 // create a stream of strings
 std::stringstream filecontents;
 // create an input file stream

ifstream myfile;
 // open the nintendowiigames.xml file as a file stream

myfile.open ("../../data/nintendowiigames.xml");
 // if the open was successfull

if (myfile.is_open())
{

 // stream the contents of the file inside the string stream
 filecontents << myfile.rdbuf();

}
 // close the file

myfile.close();
 // convert the stream to a string
 string contents(filecontents.str());
 // print out the string
 cout << contents;

return 0;
}

Florido Paganelli Programming Languages 73/88Lecture 3

C++ example
Reading and printing a file to screen – compile and execute

pflorido@tjatte:~> g++ -o readgames.cpp.bin readgames.cpp

pflorido@tjatte:~> ./readgames.cpp.bin
<?xml version="1.0" encoding="UTF­8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

Compile:

Execute:

1

2

Florido Paganelli Programming Languages 74/88Lecture 3

Python
Features:

Interpreted

Portable

Imperative paradigm

Object oriented paradigm

Not typed

Templating

No memory pointers: memory is
managed by the interpreter

Pros:

Portable, given one has the same verison of
the interpreter

Objects allowing reuse and extension of
existing code

No need to care about freeing memory,
locations are cleared by Python Garbage
Collector

Lots of community experience

Very low learning curve

Very intuitive approach

Can use C/C++ code

Preferred use:

Scripting

Application prototype
development

Cross platform
development

Very High level coding

Cons:

Portability depends on interpreter version

Automatic memory management imposes
huge memory requirements on the machine:
not efficient

Enviroment and scope models not very
intuitive, runtime behaviour might be
unexpected

Lack of types might cause unexpected results

Semantic not well defined: references, pointer
like datatypes, can be hard to see looking at
the code

Florido Paganelli Programming Languages 75/88Lecture 3

Python example
Reading and printing a file to screen

#!/usr/bin/env python
­*­ coding: utf­8 ­*­
#
readgames.py

Copyleft 2016 Florido Paganelli <florido.paganelli@hep.lu.se>

#

def main():
 # open the file as f
 with open('../../data/nintendowiigames.xml','r') as f:
 # read the whole contents
 contents = f.read();
 # close the file
 f.close();
 # output the contents
 print contents;
 return 0

if __name__ == '__main__':
main()

Florido Paganelli Programming Languages 76/88Lecture 3

Python example
Reading and printing a file to screen – pass to interpreter or

run script

pflorido@tjatte:~> chmod +x readgames.py
pflorido@tjatte:~> ./readgames.py
<?xml version="1.0" encoding="UTF­8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

pflorido@tjatte:~> python readgames.py
<?xml version="1.0" encoding="UTF­8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

Pass the file to the intepreter to be executed:

Alternatively, since we specified the intepreter at the beginning of the script, make the file
executable and execute the file:

1

1

Florido Paganelli Programming Languages 77/88Lecture 3

Golden rules of a scientific
programmer

(1) Never trust the computer, but trust your scientific intuition
● Remember the digitalization problem: a computer reduces precision

(2) Keep your code simple and functionalities separate in your
code
● Write and test each functionality
● Will help you figure out what is wrong

(3) Write many (significant) comments
● Science is knowledge sharing: others will read your code sooner or
later

(4) Don't blame the sysadmin until you're sure it's his/her
fault! ;-)

Florido Paganelli Programming Languages 78/88Lecture 3

Additional Material

Florido Paganelli Programming Languages 79/88Lecture 3

Memory size detailed

Memory is measured in bytes.

Since we know how many values we can have in a register made of 32 or 64 bits, it's
handy to use the binary system (base 2) to identify the size of a memory bank.

Byte unit of measure follows the base 2 we presented before. The concept behind this
weird choice is historically related to counting groups of 4 bits. So:

1 byte = 1 byte * 20 = 2 groups of 4 bits each, 2*4 = 8 bits is the fundamental
“quantity” of memory information.

2 bytes = 1 byte * 21 = 4 groups of 4 bits, 4*4 = 2*8 = 16 bits

1024 bytes = 1 byte * 210 is called a Kilobyte. Often noted as Kb or kb or KB
(unfortunately producers never agreed on the notation). Conversion to the different
orders is done by dividing/multiplying for 1024 in decimal notation. Examples:

1 Kilobyte = 1Kb = 210 bytes = 1024 bytes
1 Megabyte = 1Mb = 220 bytes = 1048576 bytes = 1024 KB
1 Gigabyte = 1Gb = 230 bytes = 1073741824 bytes = 1048576 KB = 1024 MB

A 4GB memory bank contains 4*1073741824 bytes = 4294967296 bytes = 232 bytes =
4194304 KB = 4*1048576 KB = 4096 MB = 4*1024 MB

bb

4 bits4 bits

byte

b b b b b b

Florido Paganelli Programming Languages 80/88Lecture 3

Protection Rings

Florido Paganelli Programming Languages 81/88Lecture 3

Protection Rings
An operating system is organized such that an application
cannot write on the other application's memory.
A three-layered architecture where memory access is
controlled according to protection rings:

● the core Ring 0 belongs to the kernel, who orchestrates
the system. Nobody but the kernel can access its
memory

● Ring 1 and 2 are for programs that access the
hardware and interact with the kernel directly for
performance reasons. Some may write the kernel
memory directly, some not.
● Ring 1, Kernel modules usually write directly
● Ring 2, Device drivers interact with the modules

● Ring 3, The external layer which is the one where we
run our programs.

Florido Paganelli Programming Languages 82/88Lecture 3

Bytecode-based languages
Some languages like Java have an intermediate representation called bytecode.

Bytecode is some sort of compiled code that cannot be executed by a real
machine, but by a Runtime Virtual Machine. (NOTE: it is NOT like the virtual
machine we saw in tutorials!).

A Runtime Virtual Machine is a program that takes in input a bytecode file
and translates it into a real machine binary code.

The developer must:

 Compile her source code to bytecode

Example: generate bytecode file from source

javac mysourcecode.java

Output will be a musourcecode.class bytecode file

1) Pass the bytecode as input file to a runtime virtual machine for it to run.

Example: execute a generated bytecode file

java mysourcecode.class

The RVM will be started and the execution of the program will start.

Florido Paganelli Programming Languages 83/88Lecture 3

Steps to bytecode compilation: Java

Real
world

Computers
world

digitalization

Algorithm Bytecode file
is not easy to read

for humans.
Requires a RVM to

be executed.

javac
Binary file

java
binary file
(java RVM)

Execution

javac
process

21

mysourcecode
process

Florido Paganelli Programming Languages 84/88Lecture 3

Dream and reality of Java
Java's bytecode and Virtual Machine goal was to create a type-safe, object
oriented portable language.

Type-safe: means that the languages always enforces that data types are
correct. This is also done by requesting the programmer to take care of eventual
bad situations at compile time. This has actually been achieved; but if the
programmer fails to do that the code dies badly.

Portability: Bytecode was an attempt to decouple the physical machine
from the computation model. Unfortunately, in the end the Virtual Machine
must “talk” with the actual machine, and that's where portability failed.

Different versions of the virtual machine for Windows, Linux and Mac, not always
compatible. Moreover, there are different implementations of the JavaVM that are not
always compatible

Software Development Kit changes all the time, making it impossible to write an
application that can work with a newer version of the virtual machine. One needs to
update both the libraries and the VM.

Efficiency drop: The virtual machine is usually slower than the real machine; Automatic
garbage collection (that allows the programmer not to care about memory problems)
causes high memory consumption and makes this language a bad choice for intensive
scientific computation – performance will quickly drop and one will need more
powerful hardware.

Florido Paganelli Programming Languages 85/88Lecture 3

Java
Features:

Bytecode Compiled for a Runtime
Virtual Machine (RVM)

Portable

Imperative paradigm

Object oriented paradigm

Types and type creation

Templating

No memory pointers: memory is
managed by the RVM

Pros:

Portable, given the RVM can run it

Objects allowing reuse and
extension of existing code

Developers do not need to care
about freeing memory, all is taken
care by the RVM Garbage Collector

Lots of community experience

Very good debugging tools and
coding environments

Preferred use:

Application development

Cross platform development

Embedded devices

High level coding

Server-Client architectures

Big projects

Cons:

Portability depends on RVM version, in reality
is not really achieved; RVM and SDK updates
may break code compatibility

Has high learning curve

Not suitable for fast prototyping

Automatic memory management imposes
huge memory requirements on the machine:
not efficient

In the last years a lot of security holes have
been discovered in the RVM, needs
continuous update

Florido Paganelli Programming Languages 86/88Lecture 3

Java example
Reading and printing a file to screen

/*
 * readgames.java
 *
 * Copyleft 2016 Florido Paganelli <florido.paganelli@hep.lu.se>
 *
 */

// import basic input/output java libraries
import java.io.*;
// import java utility Scanner
import java.util.Scanner;

// everything is a class in java
public class readgames {
 // cause specific file errors in case of problems

public static void main (String args[]) throws FileNotFoundException, IOException {

 String text = new Scanner(new File("../../data/nintendowiigames.xml")).useDelimiter("\\A").next();
 // try this code
 try {
 // create an output buffer to standard output
 BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
 // write the content of text on output
 output.write(text);
 // empty the content of standard out to screen
 output.flush();
 }
 // print an error if it fails
 catch (Exception e) {
 e.printStackTrace();
 }

}
}

Florido Paganelli Programming Languages 87/88Lecture 3

Java example
Reading and printing a file to screen – compile to bytecode

and launch RVM

pflorido@tjatte:~> javac readgames.java
pflorido@tjatte:~> ls
readgames.class readgames.java

pflorido@tjatte:~> java readgames
<?xml version="1.0" encoding="UTF­8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

Compile and generate a class file:

Launch the Java Virtual Machine and execute the class file:

Florido Paganelli Programming Languages 88/88Lecture 3

References
Binary code:
http://www3.amherst.edu/~jcook15/binarycode.html

A brief history of computing
http://ludwig.lub.lu.se/login?url=http://search.ebscohost.com/login.aspx?direc
t=true&db=cat01310a&AN=lovisa.003214669&lang=sv&site=eds-live&scope=site

Example data taken from The Game Database:
http://www.thegamesdb.net/
http://wiki.thegamesdb.net/index.php/API_Introduction

Pictures references (not complete)
http://www.jegerlehner.ch/intel/

http://www.cpu-world.com/CPUs/68000/

http://en.wikipedia.org/wiki/X86

http://en.wikipedia.org/wiki/Protection_ring

http://www3.amherst.edu/~jcook15/binarycode.html
http://ludwig.lub.lu.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat01310a&AN=lovisa.003214669&lang=sv&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat01310a&AN=lovisa.003214669&lang=sv&site=eds-live&scope=site
http://www.thegamesdb.net/
http://wiki.thegamesdb.net/index.php/API_Introduction
http://www.jegerlehner.ch/intel/
http://www.cpu-world.com/CPUs/68000/
http://en.wikipedia.org/wiki/X86

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

