
Introduction to Programming and Computing for
Scientists

Vytautas Vislavicius

Lund University

Lecture 5

Vytautas Vislavicius Programming for Scientists Lecture 5 1 / 24

Reminder: Hello, world!

#include <iostream> //Standard input/output library

int main() {
std::cout << "Hello, world!" << std::endl;
return 0;

}

The main function is mandatory in every program.

It returns an integer, where 0 means that the program execution finished
successfully. Anything else indicates failure.

iostream is the name of a library. It defines many objects and functions,
like cout and endl, which print to the standard output.

std:: denotes the namespace where cout and endl live. Different
functions can share a name if they reside in different namespaces.

Vytautas Vislavicius Programming for Scientists Lecture 5 2 / 24

Control structures - if, else
if(condition) {

statement;
}
else if(condition) {

statement;
}
else {

statement;
}

if evaluates the condition. If it is true, the statement is executed.

If it is false, the statement in the optional else clause is executed.

if and else can be nested.

if(5 == 10) {
std::cout << "This computer is insane" << std::endl;

}
else if(5 == 5) {

std::cout << "Everything is fine" << std::endl;
}
else {

std::cout << "This will never happen" << std::endl;
}

Vytautas Vislavicius Programming for Scientists Lecture 5 3 / 24

Control structures - for, while
for(initialization; condition; statement) {

statement;
}

while(condition) {
statement;

}

The for and while loops execute statements while some condition is met.
They are functionally equivalent.

Use a for loop when you know how many iterations you want to do.

Use a while loop when the number of iterations is unknown, for example if
the stopping condition depends on user input.

for(int i = 0; i < 10; ++i) {
std::cout << "i equals " << i << std::endl;

}

bool keepGoing = true;
while(keepGoing) {

std::cout << "Still going!" << std::endl;
keepGoing = readUserInput(); //This magical function returns true or false

}

Vytautas Vislavicius Programming for Scientists Lecture 5 4 / 24

Control structures - continue, break

The continue statement is used in loops to skip directly to the next
iteration. It works in both for and while loops.

for(int i = 0; i < 10; ++i) {
if(i == 5) continue; //5 won’t be printed
std::cout << "i equals " << i << std::endl;

}

The break statement is used to exit the loop entirely. It works in for and
while loops as well as switch clauses (next slide).

while(true) {
std::cout << "Still going!" << std::endl;
if(readUserInput() != true) break;

}

Vytautas Vislavicius Programming for Scientists Lecture 5 5 / 24

Control structures - switch, do-while
The switch clause can be used to replace many if statements.

switch(variable) {
case 0:
std::cout << "variable is 0" << std::endl;
break;

case 1:
std::cout << "variable is 1" << std::endl;
break;

default:
std::cout << "variable is neither 0 nor 1" << std::endl;

}

The do-while loop works like a while loop, except the condition is checked
at the end of the loop instead of the beginning.

This guarantees that the statement will be executed at least once.

bool keepGoing = true;
do {

std::cout << "Still going!" << std::endl;
keepGoing = readUserInput(); //This magical function returns true or false

} while(keepGoing);

Vytautas Vislavicius Programming for Scientists Lecture 5 6 / 24

Namespaces
A namespace is a place where variables, classes and functions live.

They can share names as long as they live in different namespaces.

Typing std:: in front of all standard functions soon gets tiresome. The
using keyword allows them to be used without a qualifier.

If you use an entire namespace, beware of collisions (e.g std::count exists).

#include <iostream> //For cout

using std::cout; //Now we don’t have to type std::cout. Just cout will do.
using namespace std; //Like the above but for everything in the std namespace

namespace first {
int a = 10;

}

namespace second {
int a = 20;

}

int main() {
cout << first::a << endl; //Will print 10
cout << second::a << endl; //Will print 20
first::a = 30;
std::cout << first::a << std::endl; //Will print 30. Using std:: still works.

}

Vytautas Vislavicius Programming for Scientists Lecture 5 7 / 24

I/O - Standard input and output
We already know how to use std::cout to write to standard output. To
read from standard input, use std::cin.

#include <iostream> //For cin and cout

int main() {
int userInput = 0;
std::cin >> userInput;
std::cout << "The user provided " << userInput << std::endl;
return 0;

}

The read operation evaluates to true if successful. A common trick is to
read many times by putting it in a while loop.

#include <iostream> //For cin and cout

int main() {
int userInput = 0;
int sum = 0;
while(std::cin >> userInput) {

sum += userInput;
std::cout << "The sum of inputs is " << sum << std::endl;

}
return 0;

}

Vytautas Vislavicius Programming for Scientists Lecture 5 8 / 24

I/O - Reading and writing files
Reading and writing files is done using the ifstream and ofstream classes
defined in the fstream library. The following program reads numbers from a
file (input.txt) and prints the sum to another file (output.txt).

#include <iostream> //For cout
#include <fstream> //For ifstream and ofstream

int main() {
std::ifstream inFile("input.txt"); //Name of the file to read from
if(!inFile) {

std::cout << "Error: could not read from file input.txt" << std::endl;
return 1; //A nonzero return value indicates failure

}
double variable = 0.;
double sum = 0.;
while(inFile >> variable) { //Read numbers until we hit the end of file

sum += variable;
}
inFile.close();

std::ofstream outFile("output.txt");
if(!outFile) {

std::cout << "Error: could not write to file output.txt" << std::endl;
return 1; //A nonzero return value indicates failure

}
outFile << sum << std::endl;
outFile.close();
return 0;

}

Vytautas Vislavicius Programming for Scientists Lecture 5 9 / 24

Containers. Arrays

An array is a fixed-size sequential container used extensively in C.

#include <iostream> //For cout and cin
using namespace std;

int main() {
const int length = 10; //The length must be known at compile time
int arr[length]; //This array is fixed-size
int input;
int pos = 0; //An array doesn’t know its own size or how many elements it contains
while(cin >> input) {

arr[pos] = input;
if(pos == length) break; //Remember that the array can’t grow, so this is our limit
++pos; //We have to keep track of the position

}
for(int i = 0; i < pos; ++i) cout << arr[i] << endl; //Easy to go out of range
return 0;

}

Try to avoid using arrays in C++. Use vectors instead (next slide).
Comments to the code above contain possible pitfalls of using arrays.

Arrays allocated on the heap are deleted with the delete[] operator.

Vytautas Vislavicius Programming for Scientists Lecture 5 10 / 24

Vectors
A vector is a sequential container that can change size dynamically.

It is a template class. The vector type must be defined at compile time.

Vectors are fast at element access and insertion/removal at the end.

#include <iostream> //For cout and cin
#include <vector>
using namespace std;

int main() {
vector<int> vec; //Create a vector with base type int
int input;
while(cin >> input) vec.push_back(input); //Store each input
for(size_t i = 0; i < vec.size(); ++i) cout << vec.at(i) << endl; //Print them back
return 0;

}

Use at to access individual elements. It’s also possible to use []. Try to
avoid this! There is no bounds checking at run time. Your bugs will go
unnoticed.

vector<int> vec; //Create an empty vector
cout << vec[3] << endl; //Index is out of bounds. Your program will happily print garbage
cout << vec.at(3) << endl; //Using at produces an error at run time, exposing your bug

Vytautas Vislavicius Programming for Scientists Lecture 5 11 / 24

Strings

A string is a sequence of characters, implemented by the string class.

#include <iostream> //For cout and cin
#include <string>
using namespace std;

int main() {
string str("It’s dangerous to go alone, take this!");
size_t pos = str.find("take"); //Position in string where "take" is found

cout << str.substr(0, 18) << str.substr(pos) << endl;
return 0; //It’s dangerous to take this!

}

A C-string is a NULL terminated array of characters used extensively in C.

Using C-strings are unwelcome for the same reasons as for arrays. Use string
class instead.

To get the C-string representation of a string, use the c_str() function.

char cString[10] = "Test"; //Contains 5 characters including the terminating \0
const char* cStringPtr = "Test"; //Pointer to string literal, can’t be modified
string cppString("Test"); //Using cppString.c_str() returns const char*

Vytautas Vislavicius Programming for Scientists Lecture 5 12 / 24

Command line parameters
#include <iostream> //For cout

int main(int argc, char* argv[]) {
std::cout << "Received " << argc << " parameters:" << std::endl;
for(int i = 0; i < argc; ++i) {

std::cout << argv[i] << std::endl;
}
return 0;

}

You can pass parameters to a program via command line. They arrive as
C-strings contained within an array.

The first parameter is always the name of the program. Let’s say, for the
sake of example, that it’s called ‘commandLineParams’.

Here is what it would look like if built and run from a terminal.

$ g++ -o commandLineParams commandLineParams.cpp
$./commandLineParams abc 123 -bla --bla
Received 5 parameters
./commandLineParams
abc
123
-bla
--bla

Vytautas Vislavicius Programming for Scientists Lecture 5 13 / 24

The stack and the heap
The memory available for a program to use (at least as far as we’re
concerned) is made up of two areas - The stack and the heap.

The stack is a small (megabytes), fixed size chunk of memory for local
variables. All examples so far have used only the stack.

When a variable on the stack falls out of scope, it is deallocated. You don’t
have to worry about memory management with the stack.

The stack is small, so it overflows if you put too many things on it. But
don’t worry - This typically only happens due to bugs (e.g an infinite loop).

#include "coords.h"

void makeCoordinates(int b) {
coords co(b, b*5);

}

int main() {
int a = 1;
makeCoordinates(a + 2);
//Grayed out variables have now been deallocated
return 0;

}

a 1
Stack Heap

<
Vytautas Vislavicius Programming for Scientists Lecture 5 14 / 24

The stack and the heap
The heap is a large pool of memory that can grow dynamically.

To put a variable on the heap, create it with the new operator. This
operator returns a pointer through which the variable is accessed.

A pointer is really just an integer. The number corresponds to a memory
address. The pointer points to that memory.

Variables on the heap are never deallocated automatically. The memory
must be freed manually using the delete operator.

The pointer itself is on the stack and is deallocated automatically.

#include "coords.h"

void makeCoordinates(int b) {
coords* co = new coords(b, b*5);

}

int main() {
int a = 1;
makeCoordinates(a + 2);
//Grayed out variables have now been deallocated
return 0;

}

a 1
Stack Heap

x 3
15y

Vytautas Vislavicius Programming for Scientists Lecture 5 15 / 24

Pointers and references
A pointer can point anywhere in memory, both the stack and the heap.

To declare that a variable is a pointer, put an asterisk (*) after its type.

To get the memory address of a variable, use the reference operator (&).

If you have a pointer and you want the value that the pointer points to, use
the dereference operator (*). That’s right - The asterisk has two uses!

int foo = 10; //Two regular variables
int bar = 20;
int* p1; //Two pointers to int
int* p2;
p1 = &foo; //p1 points to foo
p2 = &bar; //p2 points to bar

foo
bar

10
20

p1
p2

0x7fff18c41160
0x7fff18c41168

*p2 = 30; //bar = 30
*p1 = *p2; //foo = bar
p1 = p2; //p1 now points to bar
*p1 = 40; //bar = 40

foo
bar

30
40

p1
p2

0x7fff18c41168
0x7fff18c41168

To access members of a class via pointer, use the arrow (->) operator.

betterCoords a(1, 1); //Regular object
a.SetCartesian(2, 2); //Access with dot
betterCoords* b = new betterCoords(1, 1); //Pointer to object
b->SetCartesian(2, 2); //Access with arrow. This is the same as (*b).SetCartesian(2, 2)

Vytautas Vislavicius Programming for Scientists Lecture 5 16 / 24

Pass by value, reference or pointer
When calling a function, you are really passing copies of all the arguments.

If you want to change the passed values, you must use references or pointers.

int x = 1;
int y = 2;

void swapByValue(x, y); //This will NOT swap the values!
void swapByReference(x, y); //This will work. Using references is recommended.
void swapByPointer(&x, &y); //This will work, but don’t use pointers unless necessary.

void swapByValue(int a, int b) { //a and b are copies of x and y
int temp = a; //Whatever we do here has no effect on the original x and y
a = b;
b = temp;

}

void swapByReference(int& a, int& b) { //a and b are references to x and y
int temp = a; //For all intents and purposes, they ARE x and y
a = b;
b = temp;

}

void swapByPointer(int* a, int* b) { //a and b are pointers to x and y
int temp = *a; //Not safe - What if they are NULL pointers? Use references instead.
*a = *b;
*b = temp;

}

Vytautas Vislavicius Programming for Scientists Lecture 5 17 / 24

Writing a C++ class
A class is a container for data and functions. This simple class stores
coordinates. It has two member variables; an x and a y coordinate.

You can create many coords, e.g (2,5) and (1,1). They have the same type
but different internal states. An instance of the class is called an object.

The constructor creates new objects. The destructor cleans up when an
object is destroyed. We’ll talk more about these important functions later.

class coords { //Here I declare a class of type "coords"
public:
coords(int xCoord, int yCoord); //Constructor. Call to create an instance of the class.
~coords(); //Destructor. Gets called when an instance of the class is destroyed.

int x; //The only two member variables are the x and y coordinates
int y;

private: //This class has no private members
};

coords::coords(int xCoord, int yCoord) { //Simply store the user supplied coordinates
x = xCoord;
y = yCoord;

}

coords::~coords() {
//There are no special tasks to perform when destroying a set of coordinates

}

Vytautas Vislavicius Programming for Scientists Lecture 5 18 / 24

Writing a C++ class
Let’s improve the coords class. We want the ability to change an existing
coordinate. We also want the ability to work in a polar coordinate system.

At this point we should divide the code into a header file (.h) for the class
declaration and a source file (.cpp) for the implementation.

The constructor now accepts a third argument isPolar. If it is not provided
explicitly, false is used. This is called a default argument.

#ifndef BETTERCOORDS_H //This macro ensures that the .h file is only read once
#define BETTERCOORDS_H //It’s fine if you don’t understand how this works in detail

class betterCoords {
public:
betterCoords(double firstCoord, double secondCoord, bool isPolar = false);
~betterCoords() {};
void setCartesian(double xCoord, double yCoord); //Set coordinates in cartesian space
void setPolar(double rCoord, double phiCoord); //Set coordinates in polar space
double x; //Cartesian coords
double y;
double r; //Polar coords
double phi;

private:
void transformToCartesian(); //Helper functions to transform between coordinate systems
void transformToPolar();

};
#endif //This ends the ifndef macro

Vytautas Vislavicius Programming for Scientists Lecture 5 19 / 24

Writing a C++ class
#include "betterCoords.h" //Include the class declaration
#include <cmath> //For sqrt, sin, cos and atan2
using namespace std;

betterCoords::betterCoords(double firstCoord, double secondCoord, bool isPolar) {
if(isPolar) setPolar(firstCoord, secondCoord); //The user supplied polar coordinates
else setCartesian(firstCoord, secondCoord); //The user supplied cartesian coordinates

}

void betterCoords::setCartesian(double xCoord, double yCoord) {
x = xCoord; //Set cartesian coordinates
y = yCoord;
transformToPolar(); //Then calculate the equivalent polar coordinates

}

void betterCoords::setPolar(double rCoord, double phiCoord) {
r = rCoord; //Set polar coordinates
phi = phiCoord;
transformToCartesian(); //Then calculate the equivalent cartesian coordinates

}

void betterCoords::transformToCartesian() {
x = r*cos(phi);
y = r*sin(phi);

}

void betterCoords::transformToPolar() {
r = sqrt(x*x + y*y);
phi = atan2(x, y);

}

Vytautas Vislavicius Programming for Scientists Lecture 5 20 / 24

Constructors and Destructors
Constructors are called to create new instances of a class. They should
initialize all member variables of the class. In general they accept arguments.

coords::coords(int xCoord, int yCoord) {
x = xCoord; //Use the supplied values
y = yCoord;

}
coords myCoords(2, 5); //How to invoke the constructor

A constructor that takes no arguments is called a default constructor.

Always write one. It is often invoked automatically, e.g vector<coords>(5).

coords::coords() {
x = 0; //Choose a reasonable default value
y = 0;

}
coords myCoords(); //Will be (0,0)

To create copies of other objects, write a copy constructor.

coords::coords(coords& toCopy) {
x = toCopy.x; //Copy values from the other object
y = toCopy.y;

}
coords myCoords(existingCoords); //Initialize as copy of existingCoords
coords myCoords = existingCoords; //These two lines are equivalent

Vytautas Vislavicius Programming for Scientists Lecture 5 21 / 24

Constructors and Destructors
A class must have a non-copy constructor. If you do not write one, the
compiler automatically generates a default constructor with an empty body.

A class must have a copy constructor. If you do not write one, the compiler
generates one that performs a member-wise copy (aka a shallow copy).

Consider this line class. Note that it stores pointers to coordinates.

class line {
public:
line(double x1, double y1, double x2, double y2); //Constructor
~line(); //Destructor
betterCoords* start; //For some reason, we have chosen to store pointers to the coords
betterCoords* stop;

};

A shallow copy copies the pointers rather than what they point to.

line::line(line& toCopy) { //This is a shallow copy
start = toCopy.start;
stop = toCopy.stop; //Changing toCopy will affect line. We don’t want this!

}

line::line(line& toCopy) { //After a deep copy, line and toCopy are independent
start = new betterCoords(toCopy.start->x, toCopy.start->y);
stop = new betterCoords(toCopy.stop->x, toCopy.stop->y);

}

Vytautas Vislavicius Programming for Scientists Lecture 5 22 / 24

Constructors and Destructors
The destructor is automatically called when an object is destroyed.

It should delete objects on the heap and perform any other cleanup tasks.

The compiler generates an empty destructor if you don’t write one yourself.

line::~line() {
if(start) { //Safeguard against deleting NULL pointers

delete start; //This destroys the object pointed to by start
start = 0; //Not necessary here but good practice in more complicated cases

}
if(stop) {

delete stop;
stop = 0;

}
}

Once all pointers to a heap allocated variable are lost, it can’t be deleted.

This is called a memory leak. Here’s a good rule of thumb:

Every call to new should be matched by exactly one call to delete.

#include <stdlib.h> /* atof */
#include <unistd.h> /* usleep */
using namespace std;

int main(int argc, char* argv[]) {

const int sizeOfAlloccationInBytes = 300000000; //300 MB
int numberOfAllocations = 10;
double timeToSleepBetweenAllocations = 0.3 * 1000000; // microseconds

for (int i=0; i<numberOfAllocations; i++){
char *myChar = new char[sizeOfAlloccationInBytes]; // allocate memory in heap
for (int j=0; j<sizeOfAlloccationInBytes; j++){

myChar[j] = ’q’;
}
usleep(timeToSleepBetweenAllocations);
delete myChar; // <-- possible place of memory leak, if one forget to add this line
myChar = NULL;

}

return 0;
}

Vytautas Vislavicius Programming for Scientists Lecture 5 23 / 24

Next Lecture

Inheritance

Polymorphism

The const keyword

Type Casting

Operator overloading

Templates

Vytautas Vislavicius Programming for Scientists Lecture 5 24 / 24

Lists, Pairs
A list is a container with fast element insertion and removal.

Unlike vectors, elements in a list have no absolute position. Use an
iterator to loop through them. Iterators act similarly to pointers.

#include <iostream> //For cout and cin
#include <list>
using namespace std;

int main() {
list<int> lst; //List with base type int
lst.push_back(10); //Insert some elements, then iterate over the list and print them
lst.push_back(15);
for(list<int>::iterator it = lst.begin(); it != lst.end(); ++it) cout << *it << endl;
return 0;

}

A pair is a simple container that stores two values.

#include <iostream> //For cout and cin
#include <utility> //For pair
using namespace std;

int main() {
pair<int, double> p(5, 3.14); //A pair of int and double
cout << "The pair is " << p.first ", " << p.second << endl;
return 0;

}

Vytautas Vislavicius Programming for Scientists Lecture 5 25 / 24

Sets

A set is a container that stores unique objects. If a set already contains a
certain element, adding that element again does nothing. Sets are ordered.

Adding/removing elements takes logarithmic time, which is relatively slow.

Searching also takes logarithmic time - This is as fast as a search can get!

#include <iostream> //For cout and cin
#include <set>
using namespace std;

int main() {
set<int> s; //Set with base type int
s.insert(7); //Add some elements. The order in which they are added doesn’t matter.
s.insert(1);
s.insert(5);
for(set<int>::iterator it = s.begin(); it != s.end(); ++it) { //Traverse with iterator

cout << *it << endl; //Prints 1, 5, 7
}
if(s.count(8)) cout << "The set contains the number 8" << endl; //Search in the set
return 0;

}

Vytautas Vislavicius Programming for Scientists Lecture 5 26 / 24

Maps
A map is an associative container that stores key/value pairs. A key can not
be inserted twice, but the value of an existing key can be changed.

#include <iostream> //For cout and cin
#include <string>
#include <map>
#include <utility> //For make_pair
using namespace std;

int main() {
map<string, int> pBook; //Map associating strings to ints. It’s a phone book!
pBook.insert(make_pair("Reginald", 123)); //Pairs can be inserted in various ways
pBook.insert(pair<string, int>("Marmaduke", 456));
pBook["Bobby Floyd"] = 789;

map<string, int>::iterator it = pBook.find("Bruce Lee"); //How to search a map
if(it != pBook.end()) cout << it->first << "has number " << it->second << endl;
pBook["Reginald"] = pBook["Jim Bob"]; //Beware of using [] - Jim Bob is now in the book

for(map<string, int>::iterator it2 = pBook.begin(); it2 != pBook.end(); ++it2) {
cout << it2->first << " - " << it2->second << endl; //Print everyone in the book

}
return 0;

}

Bobby Floyd - 789
Jim Bob - 0
Marmaduke - 456
Reginald - 0

Vytautas Vislavicius Programming for Scientists Lecture 5 27 / 24

