Introduction to Programming and Computing for
Scientists

Vytautas Vislavicius
Lund University

Lecture 5

Vytautas Vislavicius Programming for Scientists

Reminder: Hello, world!

#include <iostream> //Standard input/output library

int main() {
std::cout << "Hello, world!" << std::endl;
return 0;

¥

@ The main function is mandatory in every program.

@ It returns an integer, where 0 means that the program execution finished
successfully. Anything else indicates failure.

@ iostream is the name of a library. It defines many objects and functions,
like cout and endl, which print to the standard output.

@ std:: denotes the namespace where cout and endl live. Different
functions can share a name if they reside in different namespaces.

Vytautas Vislavicius Programming for Scientists Lecture 5 2/ 24

Control structures - if, else

if (condition) {
statement;

else if (condition) {
statement;

else {
statement;

@ if evaluates the condition. If it is true, the statement is executed.
@ If it is false, the statement in the optional else clause is executed.

@ if and else can be nested.

if (5 == 10) {
std::cout << "This computer is insane" << std::endl;

else if (5 == 5) {

std::cout << "Everything is fine" << std::endl;
T
else {

std::cout << "This will never happen" << std::endl;
¥

Vytautas Vislavici

Programming for Scientists Lecture 5

3/24

Control structures - for, while

for(initialization; condition; statement) {
statement;

}

while(condition) {
statement;

}

@ The for and while loops execute statements while some condition is met.
They are functionally equivalent.

@ Use a for loop when you know how many iterations you want to do.

@ Use a while loop when the number of iterations is unknown, for example if
the stopping condition depends on user input.

for(int i = 0; i < 10; ++i) {
std::cout << "i equals " << i << std::endl;

bool keepGoing = true;
while(keepGoing) {
std::cout << "Still going!" << std::endl;

keepGoing = readUserInput(); //This magical function returns true or false

Vytautas Vislavici

Programming for Scientists Lecture 5 4 /24

Control structures - continue, break

@ The continue statement is used in loops to skip directly to the next
iteration. It works in both for and while loops.

for(int i = 0; i < 10; ++i) {
if(i == 5) continue; //5 won’t be printed
std::cout << "i equals " << i << std::endl;

}

@ The break statement is used to exit the loop entirely. It works in for and
while loops as well as switch clauses (next slide).

while(true) {
std::cout << "Still going!" << std::endl;
if (readUserInput() != true) break;

Vytautas Vislavicius Programming for Scientists Lecture 5 5 /24

Control structures - switch, do-while

@ The switch clause can be used to replace many if statements.

switch(variable) {
case 0:
std::cout << '"variable is 0" << std::endl;
break;

case 1:
std::cout << "variable is 1" << std::endl;
break;

default:
std::cout << "variable is neither O nor 1" << std::endl;

@ The do-while loop works like a while loop, except the condition is checked
at the end of the loop instead of the beginning.

@ This guarantees that the statement will be executed at least once.

bool keepGoing = true;
do {

std::cout << "Still going!" << std::endl;

keepGoing = readUserInput(); //This magical function returns true or false
} while(keepGoing) ;

Vytautas Vislavici Programming for Scientists Lecture 5 6 /24

Namespaces

@ A namespace is a place where variables, classes and functions live.
@ They can share names as long as they live in different namespaces.

@ Typing std:: in front of all standard functions soon gets tiresome. The
using keyword allows them to be used without a qualifier.

@ If you use an entire namespace, beware of collisions (e.g std: : count exists).

#include <iostream> //For cout

using std::cout; //Now we don’t have to type std::cout. Just cout will do.
using namespace std; //Like the above but for everything in the std namespace

namespace first {
int a = 10;

}

namespace second {
int a = 20;

int main() {
cout << first::a << endl; //Will print 10
cout << second::a << endl; //Will print 20
first::a = 30;
std::cout << first::a << std::endl; //Will print 30. Using std:: still works.

Vytautas Vislavici Programming for Scientists Lecture 5 7/ 24

|/O - Standard input and output

@ We already know how to use std: :cout to write to standard output. To

read from standard input, use std: :cin.

#include <iostream> //For cin and cout

int main() {
int userInput = 0;
std::cin >> userInput;
std::cout << "The user provided " << userInput << std::endl;
return 0;

@ The read operation evaluates to true if successful
read many times by putting it in a while loop.

. A common trick is to

#include <iostream> //For cin and cout

int main() {
int userInput = 0;
int sum = 0;
while(std::cin >> userInput) {
sum += userInput;
std::cout << "The sum of inputs is " << sum << std::endl;
}

return 0;

Vytautas Vislavici

Programming for Scientists

Lecture 5 8 /24

|/O - Reading and writing files

@ Reading and writing files is done using the ifstream and ofstream classes
defined in the fstream library. The following program reads numbers from a

file (input.txt) and prints the sum to another file (output.txt).

#include <iostream> //For cout
#include <fstream> //For ifstream and ofstream

int main() {

std::ifstream inFile("input.txt"); //Name of the file to read from

if (1inFile) {
std::cout << "Error: could not read from file input.txt" << std::endl;
return 1; //A nonzero return value indicates failure

}

double variable = 0.;

double sum = 0.;

while(inFile >> variable) { //Read numbers until we hit the end of file
sum += variable;

}

inFile.close();

std::ofstream outFile("output.txt");

if (toutFile) {
std::cout << "Error: could not write to file output.txt" << std::endl;
return 1; //A nonzero return value indicates failure

}

outFile << sum << std::endl;

outFile.close();

return 0;

Vytautas Vislavici Programming for Scientists

Lecture 5

9 /24

Containers. Arrays

@ An array is a fixed-size sequential container used extensively in C.

#include <iostream> //For cout and cin
using namespace std;

int main() {

const int length = 10; //The length must be known at compile time

int arr[lengthl; //This array is fixed-size

int input;

int pos = 0; //An array doesn’t know its own size or how many elements it contains

while(cin >> input) {
arr[pos] = input;
if (pos == length) break; //Remember that the array can’t grow, so this is our limit
++pos; //We have to keep track of the position

for(int i = 0; i < pos; ++i) cout << arr[i] << endl; //Easy to go out of range
return 0;

@ Try to avoid using arrays in C++. Use vectors instead (next slide).
Comments to the code above contain possible pitfalls of using arrays.

@ Arrays allocated on the heap are deleted with the delete[] operator.

Vytautas Vislavici

Programming for Scientists Lecture 5

10 / 24

Vectors

@ A vector is a sequential container that can change size dynamically.
@ It is a template class. The vector type must be defined at compile time.

@ Vectors are fast at element access and insertion/removal at the end.

#include <iostream> //For cout and cin
#include <vector>
using namespace std;

int main() {
vector<int> vec; //Create a vector with base type int
int input;
while(cin >> input) vec.push_back(input); //Store each input
for(size_t i = 0; i < vec.size(); ++i) cout << vec.at(i) << endl; //Print them back
return 0;

@ Use at to access individual elements. It's also possible to use [1. Try to
avoid this! There is no bounds checking at run time. Your bugs will go
unnoticed.

vector<int> vec; //Create an empty vector
cout << vec[3] << endl; //Index is out of bounds. Your program will happily print garbage
cout << vec.at(3) << endl; //Using at produces an error at run time, exposing your bug

Vytautas Vislavicius Programming for Scientists Lecture 5 11 / 24

Strings

@ A string is a sequence of characters, implemented by the string class.

#include <iostream> //For cout and cin
#include <string>
using namespace std;

int main() {
string str("It’s dangerous to go alone, take this!");

cout << str.substr(0, 18) << str.substr(pos) << endl;
return 0; //It’s dangerous to take this!

}

size_t pos = str.find('take"); //Position in string where "take" is found

@ A C-string is a NULL terminated array of characters used extensively in C.

@ Using C-strings are unwelcome for the same reasons as for arrays. Use string

class instead.

@ To get the C-string representation of a string, use the c_str() function.

const char* cStringPtr =
string cppString('Test"); //Using cppString.c_str() returns const char*

char cString[10] = "Test"; //Contains 5 characters including the terminating \0
"Test"; //Pointer to string literal, can’t be modified

Vytautas Vislavicius Programming for Scientists

Lecture 5

12 / 24

Command line parameters

#include <iostream> //For cout

int main(int argc, char* argv[]) {
std::cout << "Received " << argc << " parameters:" << std::endl;
for(int i = 0; i < argec; ++i) {
std::cout << argv[i] << std::endl;
}

return 0;

@ You can pass parameters to a program via command line. They arrive as
C-strings contained within an array.

@ The first parameter is always the name of the program. Let's say, for the
sake of example, that it's called ‘commandLineParams’.

@ Here is what it would look like if built and run from a terminal.

$ g++ -o commandLineParams commandLineParams.cpp
$./commandLineParams abc 123 -bla --bla
Received 5 parameters

./commandLineParams

abc

123

-bla

--bla

Vytautas Vislavici

Programming for Scientists Lecture 5 13 / 24

The stack and the heap

@ The memory available for a program to use (at least as far as we're

concerned) is made up of two areas - The stack and the heap.

@ The stack is a small (megabytes), fixed size chunk of memory for local

variables. All examples so far have used only the stack.

@ When a variable on the stack falls out of scope, it is deallocated. You don't
have to worry about memory management with the stack.

@ The stack is small, so it overflows if you put too many things on it. But

don't worry - This typically only happens due to bugs (e.g an infinite loop).

#include "coords.h"

void makeCoordinates(int b) {
coords co(b, b*5);

}

int main() {
int a = 1;
makeCoordinates(a + 2);
//Grayed out variables have now been deallocated
return 0;

Stack

1

<

Vytautas Vislavicius Programming for Scientists

Lecture 5

Heap

14 / 24

The stack and the heap

@ The heap is a large pool of memory that can grow dynamically.

@ To put a variable on the heap, create it with the new operator. This
operator returns a pointer through which the variable is accessed.

@ A pointer is really just an integer. The number corresponds to a memory
address. The pointer points to that memory.

@ Variables on the heap are never deallocated automatically. The memory
must be freed manually using the delete operator.

@ The pointer itself is on the stack and is deallocated automatically.

#include "coords.h" Stack Heap

void makeCoordinates(int b) { a 1
coords* co = new coords(b, bx5);

}

int main() {
int a = 1;
makeCoordinates(a + 2);
//Grayed out variables have now been deallocated
return 0;

Vytautas Vislavicius Programming for Scientists Lecture 5 15 / 24

Pointers and references

@ A pointer can point anywhere in memory, both the stack and the heap.
@ To declare that a variable is a pointer, put an asterisk (*) after its type.
@ To get the memory address of a variable, use the reference operator (&).

@ If you have a pointer and you want the value that the pointer points to, use
the dereference operator (*). That's right - The asterisk has two uses!

?nt foo = 10; //Two regular variables foo 10
iiz*b:ii/?;);o pointers to int bar 20
ililt: zic;)o' //p1l points to foo pl OX7fff18C41160
I;2 = &bar; //§2 ioints to bar p2 0X7fff18C41168
*p2 = 30; //bar = 30 fOO 30
*pl = *pé; //foo = bar bal‘ 40
T Sl e e P1l0x7fff18c41168
— P2(0x7fff18c41168

@ To access members of a class via pointer, use the arrow (->) operator.

betterCoords a(l, 1); //Regular object

a.SetCartesian(2, 2); //Access with dot

betterCoords* b = new betterCoords(l, 1); //Pointer to object

b->SetCartesian(2, 2); //Access with arrow. This is the same as (*b).SetCartesian(2, 2)

Vytautas Vislavicius Programming for Scientists Lecture 5 16 / 24

Pass by value, reference or pointer

@ When calling a function, you are really passing copies of all the arguments.

@ If you want to change the passed values, you must use references or pointers.

int x = 1;
int y = 2;

void swapByValue(x, y); //This will NOT swap the values!
void swapByReference(x, y); //This will work. Using references is recommended.
void swapByPointer(&x, &y); //This will work, but don’t use pointers unless necessary.

void swapByValue(int a, int b) { //a and b are copies of x and y
int temp = a; //Whatever we do here has no effect on the original x and y
a = b;
b = temp;

T

void swapByReference(int& a, int& b) { //a and b are references to x and y
int temp = a; //For all intents and purposes, they ARE x and y
a = b;
b = temp;

¥

void swapByPointer(int* a, int* b) { //a and b are pointers to x and y
int temp = *a; //Not safe - What if they are NULL pointers? Use references instead.
*a = xb;
*b = temp;

¥

Vytautas Vislavicius Programming for Scientists Lecture 5 17 / 24

Writing a C++ class

@ A class is a container for data and functions. This simple class stores
coordinates. It has two member variables; an x and a y coordinate.

@ You can create many coords, e.g (2,5) and (1,1). They have the same type

but different internal states. An instance of the class is called an object.

@ The constructor creates new objects. The destructor cleans up when an

object is destroyed. We'll talk more about these important functions later.

class coords { //Here I declare a class of type "coords"
public:
coords (int xCoord, int yCoord); //Constructor. Call to create an instance of the class.
“coords(); //Destructor. Gets called when an instance of the class is destroyed.

int x; //The only two member variables are the x and y coordinates
int y;

private: //This class has no private members

}

coords: :coords (int xCoord, int yCoord) { //Simply store the user supplied coordinates
x = xCoord;
y = yCoord;

&

coords: : “coords) {
//There are no special tasks to perform when destroying a set of coordinates

}

Vytautas Vislavici

Programming for Scientists Lecture 5

18 / 24

Writing a C++ class

@ Let's improve the coords class. We want the ability to change an existing
coordinate. We also want the ability to work in a polar coordinate system.

@ At this point we should divide the code into a header file (.h) for the class
declaration and a source file (.cpp) for the implementation.

@ The constructor now accepts a third argument isPolar. If it is not provided
explicitly, false is used. This is called a default argument.

#ifndef BETTERCOORDS_H //This macro ensures that the .h file is only read once
#define BETTERCOORDS_H //It’s fine if you don’t understand how this works in detail

class betterCoords {
public:
betterCoords(double firstCoord, double secondCoord, bool isPolar = false);
“betterCoords() {};
void setCartesian(double xCoord, double yCoord); //Set coordinates in cartesian space
void setPolar(double rCoord, double phiCoord); //Set coordinates in polar space
double x; //Cartesian coords
double y;
double r; //Polar coords
double phi;

private:
void transformToCartesian(); //Helper functions to transform between coordinate systems
void transformToPolar();

};

#endif //This ends the ifndef macro

Vytautas Vislavicius Programming for Scientists Lecture 5 19 / 24

Writing a C++ class

#include "betterCoords.h" //Include the class declaration
#include <cmath> //For sqrt, sin, cos and atan2
using namespace std;

betterCoords: :betterCoords(double firstCoord, double secondCoord, bool isPolar) {
if (isPolar) setPolar(firstCoord, secondCoord); //The user supplied polar coordinates
else setCartesian(firstCoord, secondCoord); //The user supplied cartesian coordinates

¥

void betterCoords::setCartesian(double xCoord, double yCoord) {
x = xCoord; //Set cartesian coordinates
y = yCoord;
transformToPolar(); //Then calculate the equivalent polar coordinates

}

void betterCoords::setPolar(double rCoord, double phiCoord) {
r = rCoord; //Set polar coordinates
phi = phiCoord;
transformToCartesian(); //Then calculate the equivalent cartesian coordinates

}

void betterCoords::transformToCartesian() {
x = r*cos(phi);
y = r*sin(phi);

T

void betterCoords: :transformToPolar() {
r = sqrt(x*x + y*y);
phi = atan2(x, y);

¥

Vytautas Vislavici Programming for Scientists Lecture 5

20 / 24

Constructors and Destructors

@ Constructors are called to create new instances of a class. They should
initialize all member variables of the class. In general they accept arguments.

coords: : coords (int xCoord, int yCoord) {
x = xCoord; //Use the supplied values
y = yCoord;

}

coords myCoords(2, 5); //How to invoke the constructor

@ A constructor that takes no arguments is called a default constructor.

@ Always write one. It is often invoked automatically, e.g vector<coords>(5).

coords: :coords() {
x = 0; //Choose a reasonable default value
y=0;

}
coords myCoords(); //Will be (0,0)

@ To create copies of other objects, write a copy constructor.

coords: : coords (coords& toCopy) {
x = toCopy.x; //Copy values from the other object
y = toCopy.y;
¥
coords myCoords (existingCoords); //Initialize as copy of existingCoords
coords myCoords = existingCoords; //These two lines are equivalent

Vytautas Vislavicius Programming for Scientists Lecture 5 21 / 24

Constructors and Destructors
@ A class must have a non-copy constructor. If you do not write one, the
compiler automatically generates a default constructor with an empty body.

@ A class must have a copy constructor. If you do not write one, the compiler
generates one that performs a member-wise copy (aka a shallow copy).

@ Consider this 1ine class. Note that it stores pointers to coordinates.

class line {
public:
line(double x1, double y1, double x2, double y2); //Constructor
~line(); //Destructor
betterCoords* start; //For some reason, we have chosen to store pointers to the coords
betterCoords* stop;

@ A shallow copy copies the pointers rather than what they point to.

line::line(line& toCopy) { //This is a shallow copy

start = toCopy.start;

stop = toCopy.stop; //Changing toCopy will affect line. We don’t want this!
¥

line::line(line& toCopy) { //After a deep copy, line and toCopy are independent
start = new betterCoords(toCopy.start->x, toCopy.start->y);
stop = new betterCoords(toCopy.stop->x, toCopy.stop->y);

Vytautas Vislavici

Programming for Scientists Lecture 5 22 /24

Constructors and Destructors

@ The destructor is automatically called when an object is destroyed.
@ It should delete objects on the heap and perform any other cleanup tasks.

@ The compiler generates an empty destructor if you don't write one yourself.

line::"line() {
if (start) { //Safeguard against deleting NULL pointers
delete start; //This destroys the object pointed to by start
start = 0; //Not necessary here but good practice in more complicated cases
}
if (stop) {
delete stop;
stop = 0;
}
¥

@ Once all pointers to a heap allocated variable are lost, it can’t be deleted.
@ This is called a memory leak. Here's a good rule of thumb:

@ Every call to new should be matched by exactly one call to delete.

#include <stdlib.h> /* atof x/
#include <unistd.h> /* usleep */
using namespace std;

int main(int argc, charx argv[]) {

Vytautas Vislavicius Programming for Scientists Lecture 5 23 /24

Next Lecture

Inheritance

Polymorphism
@ The const keyword

@ Type Casting

Operator overloading

Templates

Vytautas Vislavicius Programming for Scientists Lecture 5 24 / 24

Lists, Pairs

@ A list is a container with fast element insertion and removal.

@ Unlike vectors, elements in a 1ist have no absolute position. Use an
iterator to loop through them. lterators act similarly to pointers.

#include <iostream> //For cout and cin
#include <list>
using namespace std;

int main() {
list<int> 1lst; //List with base type int
1st.push_back(10); //Insert some elements, then iterate over the list and print them
1st.push_back(15);
for(list<int>::iterator it = lst.begin(); it != lst.end(); ++it) cout << *it << endl;
return 0;

@ A pair is a simple container that stores two values.

#include <iostream> //For cout and cin
#include <utility> //For pair
using namespace std;

int main() {
pair<int, double> p(5, 3.14); //A pair of int and double
cout << "The pair is " << p.first ", " << p.second << endl;
return 0;

Vytautas Vislavicius Programming for Scientists Lecture 5 25 / 24

Sets

@ A set is a container that stores unique objects. If a set already contains a
certain element, adding that element again does nothing. Sets are ordered.

@ Adding/removing elements takes logarithmic time, which is relatively slow.

@ Searching also takes logarithmic time - This is as fast as a search can get!

#include <iostream> //For cout and cin
#include <set>
using namespace std;

int main() {
set<int> s; //Set with base type int
s.insert(7); //Add some elements. The order in which they are added doesn’t matter.
s.insert(1);
s.insert(5);
for(set<int>::iterator it = s.begin(); it != s.end(); ++it) { //Traverse with iterator
cout << *it << endl; //Prints 1, 5, 7

if(s.count(8)) cout << "The set contains the number 8" << endl; //Search in the set
return 0;

Vytautas Vislavici

Programming for Scientists Lecture 5 26 / 24

Maps

@ A map is an associative container that stores key/value pairs. A key can not
be inserted twice, but the value of an existing key can be changed.

#include
#include
#include
#include

<iostream> //For cout and cin
<string>

<map>

<utility> //For make_pair

using namespace std;

int main() {
map<string, int> pBook; //Map associating strings to ints. It’s a phone book!
pBook. insert (make_pair("Reginald", 123)); //Pairs can be inserted in various ways
pBook.insert (pair<string, int>("Marmaduke", 456));
pBook ["Bobby Floyd"]l = 789;

map<string, int>::iterator it = pBook.find('Bruce Lee"); //How to search a map
if (it != pBook.end()) cout << it->first << "has number " << it->second << endl;
pBook["Reginald"] = pBook["Jim Bob"]; //Beware of using [] - Jim Bob is now in the book

for (map<string, int>::iterator it2 = pBook.begin(); it2 != pBook.end(); ++it2) {

cout

}

<< it2->first << ' - " << it2->second << endl; //Print everyone in the book

return 0;

Bobby Floyd - 789
Jim Bob - 0
Marmaduke - 456
Reginald - 0

Vytautas Vislavici

Programming for Scientists Lecture 5

27 / 24

