
Florido Paganelli Working with SVN 1/73Tutorial 2b

Working with SVN

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01 2016

Florido Paganelli Working with SVN 2/73Tutorial 2b

Outline

What are version/revision control systems

Generic concepts of version/revision systems

SVN

Generic concepts of SVN

SVN tutorial

Florido Paganelli Working with SVN 3/73Tutorial 2b

Notation
I will be using the following color code for showing
commands:

Application or program

app command option=value option value inputpar otherinputpar

command to application

Application options and values
 in different formats

First parameter
to command

Second parameter
to command

BLANK SPACES will NOT be visible!

svn co http://svncourse.hep.lu.se/svncourse/trunk/ svncourse

Example:

Application or program

command to application

First parameter
to command

Second parameter
to command

file:///nfs/users/floridop/Documents/teaching/programmin4science2016/florido/Tutorial2b/%23http:%2F%2Fsvncourse.hep.lu.se%2Fsvncourse%2Ftrunk%2F

Florido Paganelli Working with SVN 4/73Tutorial 2b

There are many ways of creating a file. Together we will use
a text editor

The favourite text editor for this course is called geany. Can
you find the icon in the menu? Open it by clicking on the
icon.

Alternatively, open a terminal and write the
command:
 geany &

(the & symbol sends the command execution in background, see tutorial 1b!)

Creating a file

Florido Paganelli Working with SVN 5/73Tutorial 2b

Editing and saving a file:
create new

Florido Paganelli Working with SVN 6/73Tutorial 2b

Editing and saving a file:
write something

Florido Paganelli Working with SVN 7/73Tutorial 2b

Editing and saving a file:
save or save as

Florido Paganelli Working with SVN 8/73Tutorial 2b

Editing and saving a file:
choose location and filename

1

2

3

Florido Paganelli Working with SVN 9/73Tutorial 2b

Editing and saving a file

Florido Paganelli Working with SVN 10/73Tutorial 2b

Why version/revision systems?

Say you wrote some piece of code.

You discover a bug and you want to change it.

You fix the bug, save the code. Try the program again
and… it doesn't work!

What went wrong? Would be nice if you could
compare what you changed...

Solution: make a backup copy before every
(important) change!

Version systems make it easy to backup and compare
changes

Florido Paganelli Working with SVN 11/73Tutorial 2b

If you do many changes, you
might not remember what
changes you made. Version
systems allow you to attach a
comment to the change.

If you want to share your code
with other developers, it's nice if
everybody can see who changed
what. Version systems allow you
to author the changes so the
others know what you're done.
This helps sharing code.

Why version/revision systems?

Florido Paganelli Working with SVN 12/73Tutorial 2b

Summary:

Backup each change in your code

Compare different versions of your code

Comment and annotate each change

Share among developers

Why version/revision systems?

Florido Paganelli Working with SVN 13/73Tutorial 2b

Concepts of version systems
Repository: A database that
contains the list of changes made.
Can be on a remote server or
even in a folder local to your
machine.

Working copy: the latest version
of a set of files that you want to
work on. This is usually local to
your machine.

Working

Copy

Florido Paganelli Working with SVN 14/73Tutorial 2b

Concepts of version systems

Previous Revision #:

121

Revisions: every “version”
of one or more files gets a
revision tag. This can be a
number, a label, a string.
Usually is increasing
numbers. It somewhat
identifies the moment in time
when these files were
“accepted” as good for the
rest of the project.
For this reason these systems
are also known as
Revision Systems

Previous Revision #:

122
Previous Revision #:

123
Current Revision #:

124

Florido Paganelli Working with SVN 15/73Tutorial 2b

Concepts of version systems

Checkout and update: the actions of
retrieving a revision into a working
copy:

Checkout is used the first time to
create a working copy.

Update is used to synchronize an
existing working copy.

Commit: the action assigning a
revision number to the changes
made in the working copy.
The meaning is: I like the changes
I did to these files, I accept them.
It usually involves adding the files
to a revision control database.

Working

Copy commit

Working

Copy

checkout

Current Revision #:

124

Current Revision #:

123

update

Florido Paganelli Working with SVN 16/73Tutorial 2b

Network

Concepts of version systems

Network

Local
Working
Copy A

Remote
Repository

Checkout

Commit

Network

Local
Working
Copy B

Checkout

Commit

Local
Working
Copy C

C
h

ecko
u

t

C
o

m
m

it

update update

up
da

te

Florido Paganelli Working with SVN 17/73Tutorial 2b

1. Checkout existing code from
repo

Network

Local
Working
Copy

Remote
Repository

Checkout

Current Revision #:

123

update

Florido Paganelli Working with SVN 18/73Tutorial 2b

2. Make changes in the working
copy

Network

Local
Working
Copy

Changes

Remote
Repository

Current Revision #:

123

Florido Paganelli Working with SVN 19/73Tutorial 2b

3. Commit a new version/revision

Network

Local
Working
Copy changed

Commit Remote
Repository

Current Revision #:

124

Florido Paganelli Working with SVN 20/73Tutorial 2b

Preparing for the tutorial

Install the SVN package via CLI:
sudo aptget install subversion

Create a folder in your home folder for
working copies:

mkdir ~/svn/

cd ~/svn

Reminder: the ~ symbol means “my home folder”, that is
 /home/courseuser/
the above commands will create (make directory) and go
inside (change directory)
 /home/courseuser/svn/

Florido Paganelli Working with SVN 21/73Tutorial 2b

Subversion (SVN)

Became the most widely used after CVS, but the two of
them have orthogonal features

Stores the complete file at every revision

Has a database with the changes and revision logs

Mainly centralized: a server keeps all the information,
users checkout and commit. Every commit is assigned a
new tag.

Multiple users can access a repository.

Tagging, branching, forking, merging are done by hand and
are based on conventions on the folder names:

The main repository is stored in a folder called /trunk

Branches are stored in /branches

Tags are stored in /tags

Florido Paganelli Working with SVN 22/73Tutorial 2b

SVN tutorial outline

Checkout from a repository

Add files to the working copy

Commit changes to a repository

Check changes

Diffing

Reverting

Merging

Resolution of conflicts

How to use it for your own code

Graphical clients

Homework

Advanced topics (If spare time)

Reverting method 2

Creating and applying patches

Fork, Branch, Tag

Florido Paganelli Working with SVN 23/73Tutorial 2b

Explore the content of the course
svn server

Open the browser
and go to
http://svncourse.hep.lu.se/svncourse/

During the lecture
you can refresh
this page to
browse changes

file:///nfs/users/floridop/Documents/teaching/programmin4science2016/florido/Tutorial2b/%23http:%2F%2Fsvncourse.hep.lu.se%2Fsvncourse%2F

Florido Paganelli Working with SVN 24/73Tutorial 2b

What svn commands are available?

$ svn help
$ man svn

Open a terminal.

Run the following commands:

Florido Paganelli Working with SVN 25/73Tutorial 2b

SVN checkout

Network

~/svn svncourse.hep.lu.se

$ svn co http://svncourse.hep.lu.se/svncourse/trunk/ svncourse

file:///nfs/users/floridop/Documents/teaching/programmin4science2016/florido/Tutorial2b/%23http:%2F%2Fsvncourse.hep.lu.se%2Fsvncourse%2Ftrunk%2F

Florido Paganelli Working with SVN 26/73Tutorial 2b

SVN checkout

> svn co http://svncourse.hep.lu.se/svncourse/trunk svncoursetrunk
Checked out revision 3.

svn : the subversion command

co : a shorthand for checkout

http://svncourse.hep.lu.se/svncourse/trunk
The name of the remote repository we want to sync with, and we take
the upstream or main branch, trunk

svncoursetrunk
The local (on the virtual machine) folder that will be created upon
checkout

Revision: a number assigned to a defined version of the code, that gets
incremented at every commit.

Shortcut: svn co http://svncourse.hep.lu.se/svncourse/trunk svncoursetrunk

Florido Paganelli Working with SVN 27/73Tutorial 2b

Inspect the working copy

The .svn folder hosts the svn database

!!!! you should usually NOT touch this folder.

> cd svncoursetrunk
> ls ltrah
total 16K
drwxxx 3 courseuser courseuser 4,0K nov 4 16:34 ..
rw 1 courseuser courseuser 45 nov 4 16:37 HELLO.TXT
drwxxx 3 courseuser courseuser 4,0K nov 4 16:37 .
drwxxx 6 courseuser courseuser 4,0K nov 4 16:37 .svn

> svn info
Path: .
URL: http://svncourse.hep.lu.se/svncourse/trunk
Repository Root: http://svncourse.hep.lu.se/svncourse
Repository UUID: 007b2b91cb4542beb023e64251eccede
Revision: 2
Node Kind: directory
Schedule: normal
Last Changed Author: balazsk
Last Changed Rev: 2
Last Changed Date: 20151104 16:37:00 +0100 (ons, 04 nov 2015)

Florido Paganelli Working with SVN 28/73Tutorial 2b

The commit log

Keeps track of the commits

Run
svn log v

to see it
> svn log v

r5 | balazsk | 20151106 17:49:01 +0100 (fre, 06 nov 2015) | 2 lines
Changed paths:
 A /trunk/balazs/myownfile.txt

Hello the editor stuff did not work...

r4 | balazsk | 20151106 17:34:13 +0100 (fre, 06 nov 2015) | 1 line
Changed paths:
 A /trunk/balazs

my first commit

r3 | floridop | 20151106 17:28:32 +0100 (fre, 06 nov 2015) | 1 line
Changed paths:
 A /trunk/floridop
...

Florido Paganelli Working with SVN 29/73Tutorial 2b

WorkingEx. 1: Add files

Inside trunk, create a folder with your username. Example:
 mkdir floridop

Run
 svn status
What does the output mean? Let's discover:

An svn file can be in different statuses: use
 svn help status
to discover them. What is the status of our folder?

The file we just created is not yet in the working copy database. We
must add it with
 svn add floridop (use your folder name here)

Check svn status now. What happens? What does the status value
mean? Check again with svn help status.

Copy

Florido Paganelli Working with SVN 30/73Tutorial 2b

 Ex. 2: Commit

Up to now, the files are only staying on our local disk, in
the working copy. But we want to backup and share
them, hence save them back on a remote repository!

We will also leave a nice message describing what we
just committed, using the m option

Run
 svn commit username=floridop m “my first commit”
Using the username I just gave you.
When asked, type the password (case sensitive):

svncourse2016

Working

Copy commit
Remote

Repository

Password for 'floridop':

Shortcut: svn ci

Florido Paganelli Working with SVN 31/73Tutorial 2b

Intermezzo: a unrelated feature(?):
the password keyring/wallet

This has NOTHING to do with SVN but is the default
behavior on modern distributions

Stores your password securely, but to enable it you
need: a password

It will insert passwords for you without the need for you
to remember them (this is actually dangerous in many
ways security-wise… but practical indeed.)

I suggest you write “coursepassword” when asked. This
is only local to the virtual machine, has nothing to do
with
SVN.

Florido Paganelli Working with SVN 32/73Tutorial 2b

Intermezzo: a unrelated feature(?):
the password wallet

Gnome-keyring

coursepassword

coursepassword

Florido Paganelli Working with SVN 33/73Tutorial 2b

Intermezzo: a unrelated feature(?):
the password wallet

Kde-wallet

coursepassword

coursepassword

svncourse2016

svncourse2016

1

2

3

Florido Paganelli Working with SVN 34/73Tutorial 2b

 Ex. 2: Commit

If you don't specify the m option, a file editor will pop up.
This is because every commit generates a log.

A committer is requested to describe the changes made
on the code and the effect it might have on the rest of the
codebase.

Once you save the file, the comment and the changes will be
sent to the remote repository.

● OPTIONAL: the file editor can be changed. I prefer to use m on
the command line. But if you want to use an editor, like geany:
For example, to use geany, execute:
export SVN_EDITOR=geany

Working

Copy commit
Remote

Repository

Password for 'floridop':
Adding floridop
Committed revision 3.

Florido Paganelli Working with SVN 35/73Tutorial 2b

Commit: what happened?
Explore the content of the course

svn server again!
Open the browser and go to

http://svncourse.hep.lu.se/svncourse/trunk/

During the lecture
you can refresh
this page to
browse changes

http://svncourse.hep.lu.se/svncourse/trunk/

Florido Paganelli Working with SVN 36/73Tutorial 2b

Commit – what happened?
Run
 svn status vu

It shows the updates pending in the repository and other
info:

> svn status vu
 * balazs/myownfile.txt
 * 4 4 balazsk balazs
 4 3 floridop floridop
 4 2 balazsk HELLO.TXT
 4 4 balazsk .
Status against revision: 5

The current
server revision.

Server repository revisions for
each file: Last committed revision and author.

If blank, revision information needs to be
updated.

Things changed in
current repository

revision that should
be updated,

updatable changes

Working copy
revisions:

The current
state of the

Working Copy

Files in the server
repository

Shortcut: svn st vu

Florido Paganelli Working with SVN 37/73Tutorial 2b

Commit – what happened?

Check workspace information - run
 svn info

Check server information - run
svn info http://svncourse.hep.lu.se/svncourse/trunk

Discuss the differences with the teacher.

Working

Copy commit
Remote

Repository

Working

Copy

Working

CopyWorking

Copy

commit

commit

commit
The working copies
are DIFFERENT!

http://svncourse.hep.lu.se/svncourse/trunk

Florido Paganelli Working with SVN 38/73Tutorial 2b

Ex. 3: Sync with the server:
update

We need to update the content of our work area
with the actual status of the central server. This
is done with:
 svn update

$> svn update
A balazs
A balazs/myownfile.txt
A floridop
Updated to revision 5.

> svn status uv
 5 2 balazsk HELLO.TXT
 5 5 balazsk balazs/myownfile.txt
 5 5 balazsk balazs
 5 3 floridop floridop
 5 5 balazsk .
Status against revision: 5

Working

Copy update
Remote

Repository

Shortcut: svn up

Florido Paganelli Working with SVN 39/73Tutorial 2b

Ex. 5: create a file and commit

Best practice: update first, and then commit!
1 before changing anything, always do an update, so that you're sure

you're working on the latest version of a file.

2 Then you're safe to commit.

Exercise:

1 Update (svn update)

2 cd into the folder with your name and create a file.

3 Add the file to the versioning system (svn add ...)

4 run svn status uv and compare revisions

5 Commit (svn commit –username=... m “write a description”)

6 run svn status uv again and discuss with the teacher.

Florido Paganelli Working with SVN 40/73Tutorial 2b

Ex. 6: Diffing
Make some change in the file in your working copy.

Check svn status uv

Run
svn diff

> svn diff
Index: thisisfloridofile.txt
===
 thisisfloridofile.txt (revision 6)
+++ thisisfloridofile.txt (working copy)
@@ 1 +1,2 @@
 Hello! this is florido's file.
+I am adding this change.

A' A''
==
?
!=

Line numbers of the two files:
-1 : showing line 1 of of file ---

+1,2 : showing lines 1 to 2 of file +++

Shortcut: svn df

Florido Paganelli Working with SVN 41/73Tutorial 2b

Ex. 7: Reverting
not committed changes

Say that we are not happy with the
changes we just made to a file and we
want to go back to the repository version.

Run
svn revert thisisfloridofile.txt
svn diff

Careful! You will lose all the changes
done and not committed!!!

Florido Paganelli Working with SVN 42/73Tutorial 2b

Ex. 8: Reverting
to a previous revision

Say that we don't like the current revision state, and we
want to roll back the code to a state of a different revision
back in time.

The main concept is:
you never go back in the revision history.
This is actually nice because in a collaborative environment,
keeps track of who-did-what with no cheating allowed :)

But in practice, this made cumbersome the way to revert to
a previous revision. In fact, there are different methods to
roll back a change. I will show you two – one is in the
advanced topics at the end of these slides.

Florido Paganelli Working with SVN 43/73Tutorial 2b

Ex. 8: Reverting to a previous revision
 method 1: export

SVN export is a command used to checkout a single file or a directory

The easy way to rollback is to use it to export directly from and old
revision into the working copy – that is, overwriting another
revision of the file on top of the current.

NOTE: you need to mention that there was a rollback in the commit
comment, the system will not do for you.

Exercise:

use export to roll back to one of the revisions of your file. Example:
svn export r 3 thisisfloridofile.txt .

will roll back thisisfloridofile.txt to revision 3 in the folder . (current
folder)

svn diff

svn commit the changes

Florido Paganelli Working with SVN 44/73Tutorial 2b

Importance of SVN within the course

Problem: the virtual machine disk you're using can be wiped
all time, and there is no guarantee the files you left there will
be kept.

Solution: From this tutorial on, you're invited to put your code
files on the SVN server at the end of each tutorial session.

Suggestion: create a directory TutorialXY in your /username/ SVN
folder for each tutorial

We promise to keep your files on the SVN server for the
duration of the course and course project.

The final course project material you will create can be only
handed out using a special SVN server we will indicate, so it is
good to get aquainted with SVN during the course.

Florido Paganelli Working with SVN 45/73Tutorial 2b

Graphical Clients

Want to try a graphical client?

Minimalistic one: run
rapidsvn &

This one is available in Lubuntu repositories. Install line: sudo aptget install rapidsvn

Feature-rich one (not available in repositories):
cd ~/Software
cd smartsvn8_6_2
cd bin
./smartsvn.sh

This one is NOT available on Lubuntu repositories. You need to download it from the internet if
you want the latest version.
http://www.wandisco.com/smartsvn/home

A repository can also be equipped with cool network tools to share and
visualize the changes, like TRAC. An example from NorduGrid SVN:

http://svn.nordugrid.org/trac/nordugrid/

Big example: Click here

http://www.wandisco.com/smartsvn/home
http://svn.nordugrid.org/trac/nordugrid/
http://svn.nordugrid.org/trac/nordugrid/changeset?reponame=&new=28835@arc1/trunk/src/services/a-rex/infoproviders/ARC1ClusterInfo.pm&old=25831@arc1/trunk/src/services/a-rex/infoproviders/ARC1ClusterInfo.pm

Florido Paganelli Working with SVN 46/73Tutorial 2b

Try this at home!
Or, How to benefit of revision control for your own code

One does not necessarily need a remote repository. By installing
subversion tools one gets also all the needed to create a
repository himself.

So if you get to do some coding in the future, create your own
repository:
svnadmin create ~/mysvnrepo

It will create a directory myrepo that contains the database.

Add the files you want to track/version/revise to the database:

From now on you can checkout the repository using
 svn co file:///home/username/mysvnrepo /path/to/workingcopy/
And work inside /path/to/workingcopy/

svn import /path/to/filestotrack/ file:///home/username/mysvnrepo m “Intial import of files”

Florido Paganelli Working with SVN 47/73Tutorial 2b

Homework Tutorial 2b
1) Install and configure one of SVN graphical clients. It does

not necessarily have to be any of those mentioned in this
tutorial.

2) Checkout your work folder from the trunk of svncourse.
i.e. from the URL
http://svncourse.hep.lu.se/svncourse/trunk/username/

3) Commit at least one LaTeX file you created during Tutorial
2a. Describe which client you used in the commit log.

4) Describe what you did on training.lunarc.lu.se:

1) Describe which client you used

2) Copy-paste a link to the file on SVN.

3) Show the svn log for that file. (hint: remember to
update!)

http://svncourse.hep.lu.se/svncourse/trunk/username/

Florido Paganelli Working with SVN 48/73Tutorial 2b

Advanced topics

Florido Paganelli Working with SVN 49/73Tutorial 2b

Merging

Suppose we have two versions of a document with different contents

We want to make one out of two

This is often referred as three-way-merge

We need to choose which part of each document we want to keep

There exist tools to do it, for example the excellent meld

SVN can attempt to do merges for us:

If the merges are simple, i.e. the changed content of A' can be easily mixed with that
of the content of A''. For example, the documents differ a little but the changes in
each document are not overlapping.

If we provide it with some hint on how to do the merges

If the above fail, it will ask us to do the merge manually, for example using meld

The most frequent case of merge is in case of conflicts, we'll see it later!

A'
A' + A''

A''

Florido Paganelli Working with SVN 50/73Tutorial 2b

Conflicts
A conflict happens when somebody edits a file that
somebody else edited starting from the same version and
committed at the same time,
or tries to commit without UPDATING first.

Working

Copy commit
Remote

Repository

Working

Copy

Working

Copy

Working

Copy

commit

commit

commit
The A' are all different!!
Who's right? FIGHT!

A'
from

 User3

A'
from

 User2

A'
from

 User4

A

A'
from

 User1

????

User3

User4

User2

User1

This usually happens when everybody is editing the same file.
This is the reason why in big projects files are partitioned among
programmers so that they don't write over each other.

Florido Paganelli Working with SVN 51/73Tutorial 2b

Ex. 9: Let's generate a conflict!

Open and add some text to
conflictfile.txt that I just created.
(run svn update to get it!)

It should contain:

Your name

A sentence of your choice

Make it just one line please!

All commit! The first to commit will be the winner :)

Florido Paganelli Working with SVN 52/73Tutorial 2b

Handling a conflict

The first to commit will set the new revision.

If you try to commit now, SVN will complain that
your version is not up to date with the repository

If you try to update, SVN will notice that the file you
changed has been already changed on the
repository: this is called a conflict.

Depending on the complexity of the changes made,
SVN may or may not try do do a merge for you. If it
fails, it will ask you to resolve the conflict manually.

Florido Paganelli Working with SVN 53/73Tutorial 2b

Typical conflict commit error

> svn ci username=floridop m "this is florido's line"
Sending conflictfile.txt
svn: E160024: Commit failed (details follow):
svn: E160024: File 'conflictfile.txt' is out of date; try updating
svn: E160024: resource out of date; try updating

If you see this, very likely the file you just edited has
been modified and updated to a new revision.

The solution is to adhere to the SVN Golden Rule:
ALWAYS UPDATE FIRST, THEN COMMIT!

Florido Paganelli Working with SVN 54/73Tutorial 2b

Ex. 10: Conflicts resolution
When a conflict is found, SVN shows
several options to resolve it:

> svn up
Conflict discovered in 'conflictfile.txt'.
Select: (p) postpone, (df) difffull, (e) edit,
 (mc) mineconflict, (tc) theirsconflict,
 (s) show all options: s

 (e) edit change merged file in an editor
 (df) difffull show all changes made to merged file
 (r) resolved accept merged version of file

 (dc) displayconflict show all conflicts (ignoring merged version)
 (mc) mineconflict accept my version for all conflicts (same)
 (tc) theirsconflict accept their version for all conflicts (same)

 (mf) minefull accept my version of entire file (even nonconflicts)
 (tf) theirsfull accept their version of entire file (same)

 (p) postpone mark the conflict to be resolved later
 (l) launch launch external tool to resolve conflict
 (s) show all show this list

Florido Paganelli Working with SVN 55/73Tutorial 2b

Ex. 10: Conflicts resolution - diff
Let's use diff (df) to see what the
changes are:

 (s) show all options: df
 conflictfile.txt.r13 THEIRS
+++ conflictfile.txt MERGED
@@ 1,4 +1,9 @@
 this file will be used to generate conflicts Florido
+<<<<<<< .mine

+this is a line by Florido
+=======

+
 here's my line balazsk
+>>>>>>> .r13
Select: (p) postpone, (df) show diff, (e) edit file, (m) merge,
 (r) mark resolved, (mc) my side of conflict,
 (tc) their side of conflict, (s) show all options:

Florido Paganelli Working with SVN 56/73Tutorial 2b

 (s) show all options: df
 conflictfile.txt.r13 THEIRS
+++ conflictfile.txt MERGED
@@ 1,4 +1,9 @@
 this file will be used to generate conflicts Florido
+<<<<<<< .mine

+this is a line by Florido
+=======

+
 here's my line balazsk
+>>>>>>> .r13
Select: (p) postpone, (df) show diff, (e) edit file, (m) merge,
 (r) mark resolved, (mc) my side of conflict,
 (tc) their side of conflict, (s) show all options:

Ex. 10: Conflicts resolution - diff
Let's use df to see what the
changes are:

mine :The changes in the working copy

r13 :The changes existing on the server

Conflict divider between the two changes

Common part of the file, unchanged

Change on the server

Change in the working copy (local)

Florido Paganelli Working with SVN 57/73Tutorial 2b

Ex. 10: Conflicts resolution - diff
mine-conflict: select my changes and resolve
the conflict

theirs-conflict: select the repository changes
and resolve the conflict

edit: open an editor and solve the conflict
manually

resolve: leave the file with this funny structure
and resolve the conflict

merge: use SVN builtin tool to merge

launch: use external tool to merge

postpone: leave the file with the funny structure,
but do NOT resolve the conflict!

Florido Paganelli Working with SVN 58/73Tutorial 2b

Ex. 10: Conflicts resolution - diff
Exercise:

Look at merge option. Do not merge! Go back
with abort (a)

Try the launch option. What happens?

Let's go postpone, (p) option: we will
resolve the conflict using meld

List (bash ls) the contents of the SVN
directory. What happened?

Florido Paganelli Working with SVN 59/73Tutorial 2b

Ex. 11: Merging with meld

We now have three version of a document we want to merge into one.

Meld command line syntax is as follows:
meld file1 file2 file3

The best is to use it this way:
meld source1 destination source2

That means, we want to merge the contents of the files source1 and
source2 into destination.

In our case:
meld conflictsfile.txt.mine conflictsfile.txt conflictsfile.txt.r16
where r16 is revision number that conflicts, written by SVN when we
chose postpone.

Run it!

A'
A' + A''

A''

Florido Paganelli Working with SVN 60/73Tutorial 2b

Merging with meld
A'

A' + A''
A''

1. Arrows can be used to merge the highlighted content into the pointed file

2. save the result by pressing the save button (saves all modified files!)

Florido Paganelli Working with SVN 61/73Tutorial 2b

EX 12: Conflicts resolution:
resolved

Once we're done with resolving the conflict, we
can tell the SVN system to accept the
resolution. This is done using the command
 svn resolved conflictfile.txt

After this, we're ready to commit.

$ svn commit username=floridop m "resolved conflict by adding one line per user"
svn: E155015: Commit failed (details follow):
svn: E155015: Aborting commit: '/home/courseuser/svn/svncoursetrunk/conflictfile.txt'
 remains in conflict

$ svn resolved conflictfile.txt
Resolved conflicted state of 'conflictfile.txt'
$ svn commit username=floridop m "resolved conflict by adding one line per user"
Sending conflictfile.txt
Transmitting file data .
Committed revision 14.

Florido Paganelli Working with SVN 62/73Tutorial 2b

Fork
Time

SVN trunk

Forked SVN trunk

To copy a whole trunk into another working copy, to create a completely different
program from the existing one.

≠

Florido Paganelli Working with SVN 63/73Tutorial 2b

SVN trunk

Branch
Time

To copy a whole trunk into another folder to add some features or functionalities that
are not compatible with the original working copy

Branch 2 – feature B not compatible with A and
trunk

Branch 1 – feature A not compatible with trunk

Florido Paganelli Working with SVN 64/73Tutorial 2b

Tagging
Time

trunk

Branch 2 not compatible with 1

Tagging: To copy a selected subset of the code in the working copy for it to be part
of a specific release version of the software.

● Release: the copy of a working copy of a specific version of a software when
made publicly accessible to users.

Branch 1
Tag

Branch 3 – compatible with 1

Florido Paganelli Working with SVN 65/73Tutorial 2b

Revert to old revision: method 2
reverse merge

Reverse merge is the name that SVN uses to
represent the attempt to merge a document with
a previous revision of the same document.

Let's rollback one of our files to a previous
revision:
svn merge r HEAD:3 thisisfloridofile.txt

This will NOT change the file revision. Will just copy the
content of the file at revision 3 into the latest (HEAD)
revision. You can check with svn diff and svn status v.

Commit the changes to update the server database.

Florido Paganelli Working with SVN 66/73Tutorial 2b

Creating and applying patches

A patch is a special file containing
information on how to fix a certain problem.

It's called “patch” because its fixes can be applied
on top of what already exist.

In the computer world, a patch can be either
a binary or a source file. We will not discuss
binary patches, only source code patches.

The format of a patch is similar to the diff
format we've seen already.

Florido Paganelli Working with SVN 67/73Tutorial 2b

Creating patches

A way of creating a patch is to use the svn diff
command.

Say that we gave conflictfile.txt to a friend.

Later in time, we change its contents.

We would like to give the new version to a friend,
but he/she/ze:

Does not want to use SVN

He/she/ze has very limited space to carry the new code
around, for example on a usb pen. We would just like to
share the newer parts, what changed.

Florido Paganelli Working with SVN 68/73Tutorial 2b

Creating patches wit svn diff

The syntax for the svn diff command is as
follows:

svn diff r conflictfile.txt@8
conflictfile.txt@HEAD

This generates a patch file output. What we have to
do is write the output to a file (see lecture about
the shell!):
svn diff r conflictfile.txt@8
conflictfile.txt@HEAD >
conflictfile.txt.20151112.patch

Florido Paganelli Working with SVN 69/73Tutorial 2b

Applying patches with patch

We're about to use a program called “patch”, that does three
way merge of different files given the patch file previously
created.

ALWAYS READ THE CONTENTS OF A PATCH FILE
BEFORE APPLYING IT

You can never be sure it doesn't contain malicious code!!

Let's restore revision 8 of conflictfile.txt to test the patch.

Create a folder in your home
mkdir ~/test/

Export to that folder conflictfile.txt at revision 3 with svn export
(check previous slides!)

copy the conflictfile.txt.20151112.patch patch file into the
~/test/ folder

cd into the test folder

Florido Paganelli Working with SVN 70/73Tutorial 2b

Applying patches with patch

Make sure that both the revision 3 asciifun.py file and the
conflictfile.txt.20151112.patch files are in the ~/test/
folder.

cat the content of conflictfile.txt

Run the following:
patch p0 i conflictfile.txt.20151112.patch

p0: go up of 0 directories (it does cd ../ as many times as the
indicated number)

i conflictfile.txt.20151112.patch: use
conflictfile.txt.20151112.patch as input file that contains
instructions how to patch.

cat the content of conflictfile.txt again. It changed!

Florido Paganelli Working with SVN 71/73Tutorial 2b

Version systems: products and
features

Product staging Local
commit

diff Fork/branc
h
manageme
nt

Distributed/
Collaborati
ve

Compatibili
ty

CVS
(Current
Version
Stable)

N N Y Y N ?

SVN
(SubVersio
N)

N N Y N N ?

Git Y Y Y Y Y SVN
CVS

Florido Paganelli Working with SVN 72/73Tutorial 2b

References

SVN Quick Reference Card:
http://wiki.ssg.uab.edu/download/attachments/3080576/Subversion+Quick+Reference+Card.pdf?version=1

The SVN Redbook
http://svnbook.red-bean.com/

Patching with SVN:
https://ariejan.net/2007/07/03/how-to-create-and-apply-a-patch-with-subversion/

http://wiki.ssg.uab.edu/download/attachments/3080576/Subversion+Quick+Reference+Card.pdf?version=1
http://svnbook.red-bean.com/
https://ariejan.net/2007/07/03/how-to-create-and-apply-a-patch-with-subversion/

Florido Paganelli Working with SVN 73/73Tutorial 2b

Pictures references

https://openclipart.org/

http://www.libreoffice.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

