
Florido Paganelli Interpreted Languages 1/49Tutorial 3b

Other languages and C++
Writing scripts

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01 2016

Florido Paganelli Interpreted Languages 2/49Tutorial 3b

Outline

Introduction to scripting

Bash

Scripts

Variables in bash and C++: environment, binding,
scope

Control structures

Datasets

Automation using scripting

Genesis of an algorithm

Florido Paganelli Interpreted Languages 3/49Tutorial 3b

Goals and non-goals of this
tutorial

Goals:

Being able NOT TO PANIC when somebody gives you something
you've never seen before (will happen in your entire career)

Being able to write a bash script.

Understanding the concept of variable. Environment, binding,
scope.

Being able to search for information depending on a task one wants
to achieve.

Non-goal:

Become a script-fu master. It takes long time for the black belt :)

Become a coder. We cannot do this in a lecture, there's plenty of
dedicated courses out there

Florido Paganelli Interpreted Languages 4/49Tutorial 3b

Scripting vs coding

The word script is taken from a theatrical
play script: a description of the environment
on stage, a sequence of lines and gestures
to do

There is no practical difference between
writing code in a compiled language and a
scripted one.

The main difference is that scripted
languages do not require compilation.

Florido Paganelli Interpreted Languages 5/49Tutorial 3b

A bash script and its components

#!/bin/bash

put the output of cat in the variable CPUINFO
CPUINFO=$(cat /proc/cpuinfo)

write the content of CPUINFO to screen
echo "$CPUINFO"

 A bash script is nothing more that a sequence of commands
written in a file.

 The bash interpreter will process those in sequence, from the top
line to the bottom

 Like C++, is possible to define variables and control structures
in the scripting language.

 However, the bash script language has little to share with the
complexity of C++. All that it can do is to execute commands,
test conditions, and store things in variables.

 Exercise: Open geany, write and save the following code as
getcpuinfo.sh

Florido Paganelli Interpreted Languages 6/49Tutorial 3b

Anatomy of a bash script

#!/bin/bash

put the output of cat in the variable CPUINFO

CPUINFO= $(cat /proc/cpuinfo | head 10)

write the content of CPUINFO to screen

echo "$CPUINFO"

The first line has a special syntax: #! tells bash which
interpreter to use. It might be another shell!

Every other line starting with a
hash # is a comment. The
interpreter ignores everything
that follows until the end of
line. Useful to describe code to
human readers.

A variable definition is any string followed by a = symbol. It is a
convention to use capital letters.
Remember that case matters, cpuinfo is different from CPUINFO!

This tells bash to execute a
command and return its output.

A variable call is any variable name prefixed by the $ symbol.
Case does matter here. The quotes affect the output, that in this
case depends on how the echo command works.
The $ symbol stands for “give me the value contained in that
variable”

Florido Paganelli Interpreted Languages 7/49Tutorial 3b

Executing a script
The script can be made executable as if it was a command.

To run or execute those in the current directory, prefix them

with ./
pflorido@tjatte:~> ./getcpuinfo.sh
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz
stepping : 6
cpu MHz : 2127.650

pflorido@tjatte:~> chmod +x getcpuinfo.sh

Florido Paganelli Interpreted Languages 8/49Tutorial 3b

Exercises

#!/bin/bash x

Exercise 3b.1:
What is the predefined PATH variable?

During the course we ran commands that did not need a ./ in front.
The reason is: the directory where our code is placed is not known by
the system as a place where executables are.

This list is contained in the predefined variable PATH.
Modify the first line as below, save and execute the script again:

Exercise 3b.2:
Debugging to debug your script, that is, see what is doing
while running, modify the first line as below, save and execute
the script again:

#!/bin/bash x

echo “PATH value is $PATH”

Florido Paganelli Interpreted Languages 9/49Tutorial 3b

Prepare for the tutorial
If you attended Tutorial2b (SVN)
change directory into the svn local working copy
cd ~/svn/svncoursetrunk

update the svn repository
svn update

change directory with the username I give you on the
piece of paper
cd the_username_I_gave_you_on_the_piece_of_paper

Copy the code for today's tutorial from Florido's
directory
cp r ../floridop/Tutorial3b .

change dir into the tutorial directory
cd Tutorial3b

This dot is important!!!
means

“into the current directory”

Florido Paganelli Interpreted Languages 10/49Tutorial 3b

Prepare for the tutorial
if you didn't attend Tutorial2b (SVN)

Run the following commands:
create the svn dir
mkdir ~/svn

change directory into the svn dir
cd ~/svn

checkout the svn repository
svn co http://svncourse.hep.lu.se/svncourse/trunk svncoursetrunk

change dir into the repository you just checked out
cd svncoursetrunk

create a directory with the username I give you on the
piece of paper
mkdir the_username_I_gave_you_on_the_piece_of_paper

change dir into the directory just created
cd svncoursetrunk/the_username_above/

Copy the code for today's tutorial from Florido's directory
cp r ../floridop/Tutorial3b .

change dir into the tutorial directory
cd Tutorial3b

This dot is important!!!
means

“into the current directory”

Florido Paganelli Interpreted Languages 11/49Tutorial 3b

Variables, types in C++
A variable is an identifier, a name, for a memory location.

To define a variable is to give a name and a type to it. This tells
the compiler to find a free memory space for that variable.

int number;

The type indicates the kind of information stored inside the variable.
In languages like C++ it must be declared explicitly; such languages
are also called typed languages.

The type also defines the size of the allocated memory.

As the compiler reads your code, it internally creates table of
names of variables with their types, size, tentative memory
pointers (static allocation).

Var name Var type Associated size Initial tentative
logical memory
location pointer

larger int sizeof(int)
e.g. 2bytes

10483392805

Florido Paganelli Interpreted Languages 12/49Tutorial 3b

Variables, types in C++
If the variable is not initialized, it can contain anything. It means that at runtime, when
the pointer actually will point to a real memory location, whatever is already there will
represent the variable value.

If we were to run the code immediately without initializing the variable, we're not
sure of what the content of the memory is:

number = 42;

10483...

Initial physical
memory location index

number

By assigning a value to a variable, we tell the
compiler what to write in the memory.

Var name Var type Associated
size

Initial tentative
logical memory
location pointer

value

larger int sizeof(int)
e.g. 2bytes

10483392805 42

10483...

42Initial physical
memory location index

number

010101010100010010101010
Some rubbish previously in memory

Florido Paganelli Interpreted Languages 13/49Tutorial 3b

Variables, types in bash
A variable is an identifier, a name, for a memory location. Its definition
implies that the interpreter will find a free memory space for that
variable. As in C++, this space, if not initialized, can contain anything.

CPUINFO
10483...

CPUINFO = $(cat /proc/cpuinfo)

Initial Memory location
index

Assigning a value to a variable means putting such value inside that
memory location.

In BASH, variable have no type as it is implicitly assumed the content is a string,
or a sequence of characters. The maximum size depends on the system.

Allocation is always done dynamically depending on the assignment

10483... Contents of file /proc/cpuinfo

Var name Var type Associated
size

Initial tentative
logical memory
location pointer

value

larger Always string Depends on
system
configuration

10483392805 Contents of
/proc/cpuinfo

010101010100010010101010
Some rubbish previously in memory

Florido Paganelli Interpreted Languages 14/49Tutorial 3b

Functions

Notice the curly brackets {}. These delimit a block of code

The block of code above contains the definition of the function
getmeminfo() that takes in input no parameters

The MEMINFO variable is defined inside the definition of the function.

One can define functions to reduce complexity and
increase readability

#!/bin/bash

definition of a function that gets meminfo
getmeminfo(){
MEMINFO=$(cat /proc/meminfo)
}

call to the function, it will change the environment
getmeminfo

write the content of MEMINFO to screen
echo "$MEMINFO"

Florido Paganelli Interpreted Languages 15/49Tutorial 3b

Environment, binding
All the variable and function names “live” in
a space called environment. You can think
of it as a table in the compiler or
interpreter memory containing all variable
names and their associations with memory
chunks.

A name is said to be bound to that
environment when its value is associated to
a memory index in that environment. In the
table on the left we can see some bindings.

When we define a variable, the variable
name is added to the environment

Environment Variable
name

Starting
memory
index

global PWD 48329

global SHELL 483985

global PATH 3412
cpuinfo.sh CPUINFO 10289
meminfo.sh MEMINFO 18458
meminfo.sh getmeminfo() 3515

In languages like BASH, we do not see memory indexes. In languages
like C++ we can see them in the form of pointers.
Binding can be:

Static, that is, decided at compilation time
Dynamic, that is, decided at execution time (yes one can change
where in the memory that variable is pointing)

Florido Paganelli Interpreted Languages 16/49Tutorial 3b

Visibility, scope
A variable is visible in an environment when its binding is present in
that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location (this depends on
languages)

Usually a function has its own environment, that is, a set of variables
in its own environment, and can see the variables in other
environments according to some rules. These rules define the
scope, or visibility, of a variable.

In the case of C++, blocks of code (the curly brackets {}) are used
to define new environments and scopes.

A variable defined in a block is always added to that block environment and
visible in that block's environment. For ease of use, we say is visible in that
block. What happens if one uses the same names in two blocks???

In the case of BASH, functions do not have own environment. The
scope or visibility of a variable in bash is limited to a bash
instance and all its children. Let's see some examples.

Florido Paganelli Interpreted Languages 17/49Tutorial 3b

The BASH environment: export

1 .Run the export command. You'll see all the environment
variables in the current bash session.

2. Create a new environment variable:
 export MYENV1=”This is a global env var”

3. Find the variable by running export, or just print its content
with
 echo $MYENV1

4. Open another bash instance by issuing the command bash. Run
export. Can you find the environment variable?

The environment is said to be inherited from the father
process.

5. Open another terminal and run export. Can you find the
environment variable? There is no inheritance.

Florido Paganelli Interpreted Languages 18/49Tutorial 3b

BASH environment: scope
Consider the bash script envtest.sh with the following
content:

#!/bin/bash

create an environment variable
MYENV2=”This is my second environment variable”

write the content of CPUINFO to screen
echo “Content of MYENV1: $MYENV1"
echo “Content of MYENV2: $MYENV2"

Run it: ./envtest.sh
Try to run the command:
 echo “Content of MYENV2: $MYENV2"
The father environment DOES NOT inherit from
children, but bash scripts executed inside it have
their own environment that inherits from the father.

Florido Paganelli Interpreted Languages 19/49Tutorial 3b

Importing an environment

In bash, there is a command that allows you to copy the
environment defined in a script to another script or bash
instance. This command is source

Careful! The command also executes EVERYTHING
inside the BASH script!

If you now try

source ./envtest.sh
echo “Content of MYENV2: $MYENV2"
You'll see that MYENV2 is now in the father bash environment.

As a default, bash sources /etc/profile , ~/.profile ,
~/.bashrc and some other files every time you open a terminal,
so that a set of default environment variables are defined. You
can cat these files if you're curious to see what is in them.

Florido Paganelli Interpreted Languages 20/49Tutorial 3b

Predefined variables in scripts
Prefixed by the $ symbol, they are instantiated automatically in bash at the start
of the script.

Script arguments: $#, $0, $1, $2….

$# is the number of arguments passed to the script

$0 is the name of the script itself as called to be executed

$1..n is each string that follows the name of the script.

Process info and status codes:

$$: process id (PID) of the script itself

$?: exit code of the last executed command (0 if it ended well, any other number otherwise)

$!: PID of last command executed in background

...

Various:

$PATH: list of paths where executable commands are

$PS1: prompt format

$SHELLOPTS: options with which the shell is run

$UID: User ID of the user running the script

...

Florido Paganelli Interpreted Languages 21/49Tutorial 3b

Predefined variables example

#!/bin/bash

predefinedvars.sh
call with: ./predefinedvars.sh arg1 arg2 arg3
#

print out info about arguments to this script
echo “Number of arguments: $#”
echo “Name of this script: $0”
echo “Arguments: $1 $2 $3 $4”

print this script's PID:
echo “PID is $$”

Run the script. Remember to chmod +x predefinedvars.sh to make it
executable!

Exercise: check the output of some other predefined variable, in particular $* and
$@

Florido Paganelli Interpreted Languages 22/49Tutorial 3b

Functions and scopes in C++

In C++, the environment and scopes are managed by the use of
blocks of code.

The general inheritance rules are as follows:

A block inherits the environment from its parent block,
that is, all the variable and function names existing at the
moment of opening the block are imported in the block
environment.

Every variable name defined in a block is added in the
environment of that block.

If a variable with the same name is present in the environment,
the last defined variable overrides any other variable with the
same name within that block.

That is, it is not possible anymore to use the value
contained in variables with the same name defined
outside that block.

Florido Paganelli Interpreted Languages 23/49Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Florido Paganelli Interpreted Languages 24/49Tutorial 3b

Functions and scopes in C++
Variables in the
global scope

and visible to everyone

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

Florido Paganelli Interpreted Languages 25/49Tutorial 3b

Functions and scopes in C++
Variables in the
global scope

and visible to everyone

Variables
visible by foo()

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

Florido Paganelli Interpreted Languages 26/49Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope (error!)

Florido Paganelli Interpreted Languages 27/49Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope (error!)

Florido Paganelli Interpreted Languages 28/49Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope

Variables visible in the
useless block

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Florido Paganelli Interpreted Languages 29/49Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Overridden variable
name!

Hidden variable!

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope

Variables visible in the
useless block

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Florido Paganelli Interpreted Languages 30/49Tutorial 3b

Functions and scopes in C++ Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope

Variables visible in the
useless block

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Florido Paganelli Interpreted Languages 31/49Tutorial 3b

Control structures

Enable the machine to decide on actions
depending on certain conditions.
(if..then...else..fi)

Allow the code to loop until a certain
condition is met (while...do...done)

Allow the code to loop for a definite
number of times or over a list of objects
(for...do...done)

Florido Paganelli Interpreted Languages 32/49Tutorial 3b

Conditions
Conditions are of different kinds depending on the
languages.
The only condition that BASH can check is whether a
command execution terminates successfully.

An exit value of 0 is TRUE (termination successful),
all other values are FALSE (termination unsuccessful).

The way to specify conditions is as follow:

The square bracket [] or the test command can be used.
Documentation: man test

Example: test e filename checks if a file exists

The double square bracket or extended test [[some test
command]]. Use man bash and type: /\[\[expression

Example: [[e filename]]

The double parentheses for arithmetical expansion and logical
operations ((a && b)). man bash and type: /\(\(expression

Florido Paganelli Interpreted Languages 33/49Tutorial 3b

Control structures:
if ... then … else .. fi

The BASH syntax is as follows:

 if condition; then
 command1;command2;…

 else
 commandA;commandB;…

 fi

Florido Paganelli Interpreted Languages 34/49Tutorial 3b

Control structures:
if ... then … else .. fi

le = less than or equal

#!/bin/bash
testif.sh
run with: ./testif.sh arg1 arg2 arg3
#
test that at least two arguments are passed to the script

if [[$# le 2]]; then
 echo "Not enough arguments. Must be at least 3!";
else
 echo "More than 2 arguments. Good!";
fi

Florido Paganelli Interpreted Languages 35/49Tutorial 3b

Control structures:
for ... do … done

Repeat something a predefinite number
of times or for each element in a list.

Syntax:
for i in list; do
 command1;command2;…
done

Florido Paganelli Interpreted Languages 36/49Tutorial 3b

Control structures:
for ... do … done

Print a list of files in the /etc directory

#!/bin/bash

listfiles.sh

run with: ./listfiles.sh

#

Print the argument values

echo “Listing files in /etc”

for somefile in /etc/*; do

 echo "This is the file $somefile, with type:";

 # the file command tells you the type of a file.

 file $somefile

done

Florido Paganelli Interpreted Languages 37/49Tutorial 3b

Control structures:
for ... do … done

Print the arguments using different
condition approaches

#!/bin/bash
testfor.sh
run with: ./testfor.sh arg1 arg2 arg3 ...
#
Print the argument values

echo “Using lists of elements”
index=1 # Reset argument counter
for arg in "$@"; do
 echo "Arg #$index = $arg"
 let "index+=1"
 done # $@ sees arguments as separate words.

echo “Using C syntax for the condition”
for ((i=1 ; i <= $# ; i++)); do
 echo "Argument $i is ${!i}";
done

● #$var forces the content
of var to be a number

● Parameter substitution
 ${!var} Gets the value
of a variable with the
name $var instead of
var

Florido Paganelli Interpreted Languages 38/49Tutorial 3b

Control structures:
while … do … done

Keeps doing something as long as
condition is satisfied.

Syntax:
while condition; do
 command1;[command2;…]
done

Florido Paganelli Interpreted Languages 39/49Tutorial 3b

Control structures:
while … do … done

Ask the user to enter a variable value
(using the read command) until the string
end is entered

#!/bin/bash
testwhile.sh
run with: ./testwhile.sh
#
Continue asking numbers until the user writes “end”

while ["$var1" != "end"]; do # while test "$var1" != "end"
 echo "Input variable value (end to exit) "
 read var1 # Not 'read $var1' (why?).
 echo "variable value = $var1" # Need quotes because of "#" . . .
 # If input is 'end', echoes it here.
 # Does not test for termination condition until top of loop.
echo
done
exit 0

Florido Paganelli Interpreted Languages 40/49Tutorial 3b

Exercises

3b.3: Change the iftest.sh code to
complain if the user did not write at least
5 command line arguments

3b.4: Change the listfiles.sh code to
list the types of files in the folder /tmp

3b.5: Change the testwhile.sh code to
exit when the user writes bye!

Florido Paganelli Interpreted Languages 41/49Tutorial 3b

Datasets

A dataset is some digital collection, maybe a file or a set
of files, that contains data we want to use.

A dataset usually has his own format.

A format is a set of rules that define in a rigorous manner
how the content of the dataset should be read, what are their
meanings and the relationship among the dataset information

The format can be a well know data format, more or less
standardized, or some custom data format that one needs to
learn

A description of the format is usually provided by the
community that generated the dataset. It is very rare that a
dataset contains information about its format.

Florido Paganelli Interpreted Languages 42/49Tutorial 3b

Sample data file
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing
this data?
Can we guess something about
the structure?

Florido Paganelli Interpreted Languages 43/49Tutorial 3b

Sample data file: investigation
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing
this data?
Can we guess something about
the structure?

Florido Paganelli Interpreted Languages 44/49Tutorial 3b

Automation and
composition of languages

Cornerstone of open source programming:
if something exist that does a task, and it does it
good, use it and do not rewrite code

Automation of repetitive tasks

Make use of interoperability within languages

Technique: identify subproblems and separate
tasks, increasing debuggability

Choose the right command/language for each
subtask

Florido Paganelli Interpreted Languages 45/49Tutorial 3b

Automation exercise with BASH

Description of the problem to solve:

Write a script checkdataset.sh that
manipulates a dataset

The script takes in input two arguments:

A URL to an svn repo on the web.

A name of directory where the file and the
contents of the file will be stored

http://svncourse.hep.lu.se/svncourse/trunk/floridop/Tutorial3b/data

http://svncourse.hep.lu.se/svncourse/trunk/floridop/Tutorial3b/data

Florido Paganelli Interpreted Languages 46/49Tutorial 3b

Genesis of an algorithm:
a top down approach

Write a list of each main task translating what I
wrote in the description. We can brainstorm it
in the class before proceeding.

Open a new .sh file with geany

Write down the header and start writing down
as comments the steps to the algorithm. You
can write that on paper first.

An example is placed in svn as
floridop/Tutorial3a/homework/checkdataset.sh.skeleton

Florido Paganelli Interpreted Languages 47/49Tutorial 3b

Inspecting the dataset

1.Download it from svn with the command:

2.List the content of the dataset directory

3. Open the file with geany

svn co http://svncourse.hep.lu.se/svncourse/trunk/floridop/Tutorial3b/data dataset

ls ltrah dataset

geany dataset/nintendowiigamesprettyprinted.xml &

http://svncourse.hep.lu.se/svncourse/trunk/floridop/Tutorial3b/data

Florido Paganelli Interpreted Languages 48/49Tutorial 3b

Homework 3b

Download the skeleton file from svn
http://svncourse.hep.lu.se/svncourse/trunk/floridop/Tutorial3b/homework/checkdata
set.sh.skeleton

Complete the skeleton file with the
requested lines of code.

Upload the code to training.lunarc.lu.se

The final result should look like the files at
the url:

http://svncourse.hep.lu.se/svncourse/trunk/floridop/Tutorial3b/homework/sampleresult/

Florido Paganelli Interpreted Languages 49/49Tutorial 3b

References

Bash scripting:
http://tldp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

