
Florido Paganelli MNXB01-2017 - Working with git 1/47Tutorial 2b

Working with GIT

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01 2017

Florido Paganelli MNXB01-2017 - Working with git 2/47Tutorial 2b

Required Software
Git - a free and open source distributed version control
system

Gitg – a fast git repository viewer (there are many!)

Command line installation (bash):

sudo apt­get install git gitg

Note: this software is NOT installed by default by the Lubuntu system installation.

Platform Package names

Ubuntu, Debian git, gitg

RedHat, CentOS, Fedora,
SuSE

git, gitg

Windows http://www.jamessturtevant.com/posts/5-Ways-to-
Install-git-on-Windows/

Mac OS http://www.macworld.co.uk/how-to/mac-software/h
ow-use-git-github-on-your-mac-3639136/

http://www.jamessturtevant.com/posts/5-Ways-to-
http://www.macworld.co.uk/how-to/mac-software/how-use-git-github-on-your-mac-3639136/
http://www.macworld.co.uk/how-to/mac-software/how-use-git-github-on-your-mac-3639136/

Florido Paganelli MNXB01-2017 - Working with git 3/47Tutorial 2b

Outline

What are version/revision control systems

Generic concepts of version/revision systems

git

Generic concepts of git

git tutorial

Additional useful commands

Florido Paganelli MNXB01-2017 - Working with git 4/47Tutorial 2b

Notation
I will be using the following color code for showing
commands:

Application or program

app command ­­option=value ­option value inputpar otherinputpar

command to application

Application options and values
 in different formats

First parameter
to command

Second parameter
to command

BLANK SPACES will NOT be visible!

git co https://github.com/floridop/MNXB01­2017 MNXB01­2017

Example:

Application or program

command to application

First parameter
to command

Second parameter
to command

https://github.com/floridop/MNXB01-2017

Florido Paganelli MNXB01-2017 - Working with git 5/47Tutorial 2b

Why version/revision systems?

Say you wrote some computer program in a text file.

You discover a bug, something that does not work as it
should, and you want to change it.

You fix the bug, save the file. Try the program again and… it
doesn't work anymore!

What went wrong? Would be nice if you could compare
what you changed...

Solution: make a backup copy before every (important)
change!

Version systems make it easy to backup and compare
changes

Florido Paganelli MNXB01-2017 - Working with git 6/47Tutorial 2b

If you do many changes, you
might not remember what
changes you made. Version
systems allow you to attach a
comment to the change.

If you want to share your code
with other developers, it's nice if
everybody can see who changed
what. Version systems allow you
to author the changes so the
others know what you're done.
This helps sharing code.

Why version/revision systems?

Florido Paganelli MNXB01-2017 - Working with git 7/47Tutorial 2b

Summary:

Backup each change in your code

Compare different versions of your code

Comment and annotate each change

Share among developers

Why version/revision systems?

Florido Paganelli MNXB01-2017 - Working with git 8/47Tutorial 2b

Version systems: products and
features

Product staging Local
commit

diff Fork/branch
management

Distributed/
Collaborative

Compatibility

CVS
(Current
Version Stable)

N N Y Y N ?

SVN
(SubVersioN)

N N Y N N ?

Git Y Y Y Y Y SVN
CVS

Florido Paganelli MNXB01-2017 - Working with git 9/47Tutorial 2b

What and why git

Was created by Linus Torvalds especially for kernel
development

Highly distributed community contributions

Lots of people forking and writing their own version of
drivers (later I'll explain this term)

Nowadays there are many collaborative websites
systems that use it to share code (github, gitlab)
and make it easier to integrate everyone's work
with discussion and code revision/testing tools

Is being used by many because is a free solution
that helps distributed cooperation

Becoming the most used among research projects

Florido Paganelli MNXB01-2017 - Working with git 10/47Tutorial 2b

Concepts of version systems in git
Repository: A database that contains the
list of changes made.

A local git repository is shared locally on
your machine in the .git invisible folder

A remote git repository is shared on a
remote server and can be reached using
a URL, like
https://github.com/floridop/MNXB01-2017

A bare git repository can be stored in
any folder and contains data in a form
that only the git code understands. Can
be used to have multiple copies of the
same repository. It can be used to share
a repository without github.

remote
repository

(usually bare)

Remote
Server

Local
repository

synchronization
operations

https://github.com/floridop/MNXB01-2017

Florido Paganelli MNXB01-2017 - Working with git 11/47Tutorial 2b

Concepts of version systems in git

Repository: A database that
contains the list of changes made.

Since git is distributed, there
can be many remote
repositories.

remote
repository

(usually bare)

Remote
Server

Local
repository

synchronization
operations

remote
repository

(usually bare)

Remote
Server

remote
repository

(usually bare)

Remote
Server

Florido Paganelli MNXB01-2017 - Working with git 12/47Tutorial 2b

Concepts of version systems in git
Working directory: the latest version of a set of files
that you want to work on. This is usually local to your
machine.

It is usually the result of a clone, an exact copy, of
some remote repository

You can synchronize the local git repository with
remote ones using the push (send changes) and pull
(retrieve changes) commands.

.git

Working
directory

remote
repository

(usually bare)

Remote
Server

pull

push

Florido Paganelli MNXB01-2017 - Working with git 13/47Tutorial 2b

.git

Working
directory

Concepts of version systems

Previous Revision #:

hash1

Revisions or commit ID: every
“version” of one or more files gets a
revision tag. This can be a number, a
label, a string. In git usually is an
hash*.
It somewhat identifies the moment in
time when these files were “accepted”
as good for the rest of the project.
For this reason these systems are also
known as
Revision Systems, as every revision
gets a label that depends on time and
person who made the change.
*Hash: a special injective function that returns a value
from a finite set of strings. The return values are
uniques under certain conditions.

Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Florido Paganelli MNXB01-2017 - Working with git 14/47Tutorial 2b

Concepts of version systems
git specifics

A repository might have one or more branches,
that is, different version of the same repository
which modify or propose different features.

They're called branches because they can be
visualized like a tree as they diverge from some
initial branch, usually called master.
Every branch has a name.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch

master

Branch

coolfeature

Branch

dangerouschanges

Florido Paganelli MNXB01-2017 - Working with git 15/47Tutorial 2b

Concepts of version systems
git branch

Every branch history is a continuation of the
history where the master was branched.

It is possible to branch from a branch, not just
from the master. Use with care, can be
confusing!

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch

master

Branch

coolfeature

Branch

dangerouschanges

Florido Paganelli MNXB01-2017 - Working with git 16/47Tutorial 2b

Concepts of version systems
git branch

A branch can be made active with the checkout
operation. When a branch is checked out you will
be able to see its files in your working
directory.

✔ To check out a branch means to select a
certain history of changes.

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature Working
directory

checkout
coolfeature.git

file1 file2 file3

Florido Paganelli MNXB01-2017 - Working with git 17/47Tutorial 2b

Concepts of version systems
git add

If one modifies or changes files contained in a
certain revision, git can see it, and gives the
choice to add these changes to the database

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature Working
directory

checkout
coolfeature.git

file1 file2 File3
(changed)

File4 changed
added

Florido Paganelli MNXB01-2017 - Working with git 18/47Tutorial 2b

Concepts of version systems
git add

Added files are staged to be part of a next
revision.

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature Working
directory

checkout
coolfeature.git

file1 file2 File3
(changed)

File4 staged

Florido Paganelli MNXB01-2017 - Working with git 19/47Tutorial 2b

Concepts of version systems
git commit

Staged files will then be actually become part of
a new revision in the database once the user
commits them.

Previous Revision #:

hash7
Branch

coolfeature Working
directory

checkout
coolfeature.git

file1 file2 File3
(changed)

File4

Current Revision #:

hash10
Previous Revision #:

hash8

Florido Paganelli MNXB01-2017 - Working with git 20/47Tutorial 2b

What is a software fork

In software engineering, a fork of a software
project A it's a copy of the software source code
of A to develop features for a project B,C,... that
follow completely independent choices from
project A.

project A
project A

project B

project C

All projects share the same
code until this point in time

past / present

fu
tu

re

Florido Paganelli MNXB01-2017 - Working with git 21/47Tutorial 2b

Preparing for the tutorial

Create a folder in your home folder
mkdir ~/git/

cd ~/git

Download the tutorial app (also available on L@L):
wget http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01.tgz

Unpack the tutorial app:

tar zxvf gitmnxb01.tgz

Enter the created directory and start the app:

cd Git­it­linux­ia32

./Git­it &
Reminder: the ~ symbol means
 “my home folder”, that is
 /home/courseuser/
the above commands will create (make
directory) and go inside (change
directory)
 /home/courseuser/git/

mailto:L@L

Florido Paganelli MNXB01-2017 - Working with git 22/47Tutorial 2b

During the tutorial you'll be asked many times to do things
with files. For those of you not familiar with file editing,
here's a small how-to.

There are many ways of creating a file.
One way is by using a text editor

The favorite text editor for this course is called geany. Can
you find the icon in the menu? Open it by clicking on the
icon.

Alternatively, open a terminal and write the
command:
 geany &

(the & symbol sends the command execution in background, see tutorial 1b!)

Creating and editing a file

Florido Paganelli MNXB01-2017 - Working with git 23/47Tutorial 2b

Editing and saving a file:
create new

Florido Paganelli MNXB01-2017 - Working with git 24/47Tutorial 2b

Editing and saving a file:
write something

Florido Paganelli MNXB01-2017 - Working with git 25/47Tutorial 2b

Editing and saving a file:
save or save as

Florido Paganelli MNXB01-2017 - Working with git 26/47Tutorial 2b

Editing and saving a file:
choose location and filename

1

2

3

Florido Paganelli MNXB01-2017 - Working with git 27/47Tutorial 2b

Editing and saving a file

Florido Paganelli MNXB01-2017 - Working with git 28/47Tutorial 2b

Have fun with the Git-it tutorial!

Created by jlord, see
https://github.com/jlord/git-it-electron

Contributed by various authors

Written in JavaScript and HTML using a
framework called node.js

Once done the tutorial shows you some
other useful commands and tools.

https://github.com/jlord/git-it-electron

Florido Paganelli MNXB01-2017 - Working with git 29/47Tutorial 2b

Setting your default editor with
git

If you commit without the -m option, git will
automatically open a text editor for you to write a
commit comment.

It is good practice to write a commit title, leave a
blank line, and describe your commit in more detail.

We will use geany as the default editor, but you can
use any editor you like.

If you don't configure anything, the default is a text
editor called nano, which for some is a bit weird at
first. But I suggest to use it so you just use the
command line. Press “CTRL + O” to save the file,
”CTRL + X” to exit.

Florido Paganelli MNXB01-2017 - Working with git 30/47Tutorial 2b

Setting geany as the default git
editor

Run:
 git config core.editor geany

Note that the commit will only happen ONCE
when you save the file in geany.

Test by running

 git commit

If you don't like it, revert to default by
writing

 git config ­­unset core.editor

Florido Paganelli MNXB01-2017 - Working with git 31/47Tutorial 2b

Git log, commit history,
revision numbers

All the commit history with you messages
can be browsed using the command

 git log

> git log
commit 30d4b3805d7de65622cfcd21a122644e33ab76dc
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:39:13 2017 +0200

 second change

commit c9af94904c6868ef136d75730fbde63e0a15cf31
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:38:11 2017 +0200

 Created readme

30d4b3805d7de65622cfcd21a122644e33ab76dc

Revision number,
an hash

Commit
comments

c9af94904c6868ef136d75730fbde63e0a15cf31

Florido Paganelli MNXB01-2017 - Working with git 32/47Tutorial 2b

Git log, commit history,
revision numbers

To see which files have changed for each
commit:

 git log ­­name­status

Florido Paganelli MNXB01-2017 - Working with git 33/47Tutorial 2b

Removing or renaming a file

Removing: Sometimes one can decide that files in the directory
should not be part of the repository anymore. Rather than
deleting them with the rm command, one can use

 git rm filename

Remove a file using the above command.

Check the output of git status .

git commit ­m 'I have deleted file filename'
Remember: CLEARLY STATE that you removed some files in the
commit message!

Renaming: git mv oldfilename newfilename is equivalent to
 git rm oldfilename
followed by
 git add newfilename

Florido Paganelli MNXB01-2017 - Working with git 34/47Tutorial 2b

Graphical Diffing
Run
git diff

> git diff
Index: thisisfloridofile.txt
===
­­­ thisisfloridofile.txt (revision 6)
+++ thisisfloridofile.txt (working copy)
@@ ­1 +1,2 @@
 Hello! this is florido's file.
+I am adding this change.

A' A''
==
?
!=

Line numbers of the two files:
-1 : showing line 1 of of file ---

+1,2 : showing lines 1 to 2 of file +++

If you want a graphical tool to check the diffs, I suggest meld
 sudo apt­get install meld

Use meld as the default diff tool:
 git config diff.tool meld
 git difftool thisisfloridofile.txt

Florido Paganelli MNXB01-2017 - Working with git 35/47Tutorial 2b

Undoing
not committed changes

Say that we are not happy with the changes we just made to a single
file and we want to go back to the latest commit (also called HEAD)

Change one of the files in your repository and issue git status.

The best to do is a simple checkout of the file from the last commit
git checkout thisisfloridofile.txt
git diff

Careful! You will lose all the changes done and not committed!!!

Note that this is equivalent to checkout the file at the latest revision
HEAD:
git checkout HEAD thisisfloridofile.txt

Checking out HEAD of all files in a directory will cancel all the changes
done to the uncommitted files in that directory.
git checkout HEAD *

Play a bit with these commands by changing files and see what
happens.

Florido Paganelli MNXB01-2017 - Working with git 36/47Tutorial 2b

Reverting
to a previous revision

Say that we don't like the current revision state, and we
want to roll back the code to a state of a different revision
back in time.

The main suggestion is:
try to never go back in the revision history.
This is actually nice because in a collaborative environment,
keeps track of who-did-what with no cheating allowed :)
Unfortunately git allows for “cheating” by changing the
revision history. It can be useful sometimes, but must be
used with extreme care. Changing the revision history
gives no UNDO.

To experience with this, change some files and commit.

Florido Paganelli MNXB01-2017 - Working with git 37/47Tutorial 2b

Reverting to a previous revision
the safe way: revert

The revert command restores the state of
all files at a certain revision to the current
working dir.

Usually the output of a revert gives hints
about the steps to take before committing.

Make sure you have at least three
commits (check git log)

Create a fourth commit

Florido Paganelli MNXB01-2017 - Working with git 38/47Tutorial 2b

Reverting to a previous revision
the safe way: revert

Try to git revert everything to your second
commit in the log:
git revert commithash

Example:
git revert c9af94904c6868ef136d75730fbde63e0a15cf31

Read the git status output to see what changed

Take action to make the files ready for commit, and
commit

Git will automatically start a commit and open the text
editor for you. It will add the “Revert commithash”
comment to your commit and wait for your input.

Florido Paganelli MNXB01-2017 - Working with git 39/47Tutorial 2b

Reverting to a previous revision
the unsafe way: reset

The reset command does something different. It does
not preserve history and allows you to modify an
existing commit. For a detailed explanation see
https://www.atlassian.com/git/tutorials/undoing-change
s
I suggest to use it only when one of these two happen:

You already staged some changes to a file and you want to
unstage them
 git reset filetounstage

You are totally unhappy with whatever you did so far and
want to unstage all staged files:

git reset

https://www.atlassian.com/git/tutorials/undoing-changes
https://www.atlassian.com/git/tutorials/undoing-changes

Florido Paganelli MNXB01-2017 - Working with git 40/47Tutorial 2b

Fixing commit mistakes

Commit allows you to amend or change the
latest commit if, for example, you forgot a
file or you wrote the wrong comment:
 git commit ­­amend

Note that this will create a new revision
hash, but will DELETE the previous commit
hash.

See https://git-scm.com/book/id/v2/Git-
Basics-Undoing-Things

Florido Paganelli MNXB01-2017 - Working with git 41/47Tutorial 2b

Importance of git within the course
(especially for the final project!)

Problem: the virtual machine disk you're using can be wiped all
time, and there is no guarantee the files you left there will be
kept.

Solution: From this tutorial on, you're invited to put your code
files on your github repository at the end of each tutorial
session.

Suggestion: create a directory TutorialXY in your /username/ git
folder for each tutorial

You may or may not want to pull request your changes. In some cases
this will be requested by the Homework.

The final course project material you will create can be only
handed out using a special git repository we will indicate, so get
familiar with git!

Florido Paganelli MNXB01-2017 - Working with git 42/47Tutorial 2b

Graphical Clients

Want to try a graphical client?

Minimalistic one: in the folder where a git
repository exists, run

gitg &

Check out how it shows branches!

Feature-rich one (not available in repositories):
https://www.gitkraken.com/

This one is NOT available on Lubuntu repositories. You
need to download it from the internet if you want the
latest version.

Florido Paganelli MNXB01-2017 - Working with git 43/47Tutorial 2b

Homework Tutorial 2b (HW2b)
1)Create a github account (you should already have it after the tutorial)

2)Fork the repository:
 https://github.com/floridop/MNXB01-2017.git

3)Clone the repository you forked.

4)Using the git remote command, add:

your fork repository as the remote origin

My upstream branch https://github.com/floridop/MNXB01-2017.git as the
upstream remote branch

5) At the root of the repository, create a folder with the first three letters of your name
and the surname. For example my name is Florido Paganelli, I created:

flopaganelli

6) In the above folder, create a folder called HW2a and upload the homework Oxana
assigned to you yesterday.

7)Add the new files and commit. Remember to write an explicative comment in
the commit. Stupid comments will be rejected.

8) push to the remote origin and submit me a pull request on github.

9)Copy the link of your github fork and a link to your pull request on Live@Lund.

https://github.com/floridop/MNXB01-2017.git

Florido Paganelli MNXB01-2017 - Working with git 44/47Tutorial 2b

Advanced topics

Florido Paganelli MNXB01-2017 - Working with git 45/47Tutorial 2b

Merging

Suppose we have two versions of a document with different contents

We want to make one out of two

This is often referred as three-way-merge

We need to choose which part of each document we want to keep

There exist tools to do it, for example the excellent meld

git can attempt to do merges for us:

If the merges are simple, i.e. the changed content of A' can be easily mixed with that of the
content of A''. For example, the documents differ a little but the changes in each document
are not overlapping.

If we provide it with some hint on how to do the merges

If the above fail, it will ask us to do the merge manually, for example using meld

The most frequent case of merge is in case of conflicts, we will not see them in
this course.

A'
A' + A''

A''

Florido Paganelli MNXB01-2017 - Working with git 46/47Tutorial 2b

Merging with meld
A'

A' + A''
A''

1. Arrows can be used to merge the highlighted content into the pointed file

2. save the result by pressing the save button (saves all modified files!)

Florido Paganelli MNXB01-2017 - Working with git 47/47Tutorial 2b

References
git cheat sheets:
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Quick guide to githttp://rogerdudler.github.io/git-guide/

Jlord's git-it:
https://github.com/jlord/git-it-electron

Merging with meld
https://www.youtube.com/watch?v=3Qynj8WUwgs

Reverting
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Pictures references
https://openclipart.org/

http://www.libreoffice.org/

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
http://rogerdudler.github.io/git-guide/
https://github.com/jlord/git-it-electron
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

