
Introduction to Programming and Computing for
Scientists (2017 HT)

Tutorial-3a: First steps with C++ programming

Balázs Kónya

HTTP://WWW.HEP.LU.SE/COURSES/MNXB01

Programming for Scientists Tutorial 3a 1 / 17

Quick refresher: C++ in a nuttshell

• Created by Bjarne Stroustrup at AT&T Bell Laboratories in the early 1980’s, later
maintenance, governance has been taken over by the Standard C++ Foundation

• General purpose, strongly-typed, high-level programming language based on the
C language. C++ is an ”incremented” version of C

• "the name signifies the evolutionary nature of the changes from C”

• ++ is the (post) increment operator in C

• C++ is much more than that, it is a very powerfull & flexible language

• Compiled language

• Compilers play an important role, standard-compliant and compatible
compilers have been a challenge for C++ community for quite a long period

• Multi-paradigm language: object-oriented, procedural, functional

• Multi-platform (Windows, Unix, Mac, etc...)

Balázs Kónya Programming for Scientists Tutorial 3a 2 / 17

Quick refresher : C++ in a nuttshell
• Standardized by an ISO

WG

• Promoted, supported by
the Standard C++
Foundation

• check out their site:
http://isocpp.org

• Latest version:
C++11/14/17/20

• What really matters:
compliers!:

• http://en.cppreferen
ce.com/w/cpp/comp
iler_support

Balázs Kónya Programming for Scientists Tutorial 3a 3 / 17

Before we start...

Balázs Kónya

“The problem with using C++ … is

that there’s already a strong

tendency in the language to

require you to know everything

before you can do anything.”

Larry Wall, developer of the Perl language

“C makes it easy to shoot yourself in the foot;

C++ makes it harder, but when you do, it

blows away your whole leg.”

Bjarne Stroustrup, developer of the C++ programming language

Programming for Scientists Tutorial 3a 4 / 17

One of the simpliest c++ programs
• Main function

• No input parameter ()

• Returns an integer (zero value for success)

• Main is mandatory

• C++ programs begin executing at main()

• What the function does is described within {}

• // is the way to add single line comments

• The program itself, the body of the main function between the left and right brace {}:

• Prints a text message to the standard output (screen)

• Printing is done with the iostream library, therefore the iostream library has to
be ”included” into the program

• The library defines several objects & functions to work with I/O streams

• std::cout is the standard output, printing to the stdoutput is done via the
>> operator

• std::cout is a c++ way of denoting the namespace of the library

• The message to be printed is the one in quotes: Hello, world!

• Note the semicolon (;) at the end of the printout line

Balázs Kónya

// simple c++ code

#include <iostream>

int main() {

std::cout << "Hello, world!";

}

Programming for Scientists Tutorial 3a 5 / 17

From source code to executable
The usual steps for generating a C++ program are:

1. Editing: User writes the source code for a C++ program in the text editor

2. Preprocessing: The C++ preprocessor carries out various source code
manipulations before the compiler’s translation phase. The manipulations
usually include inserting the contents of other source code files, preparing for
conditional compilation, and performing various text replacements.

• e.g. #include statements are taken care by the preprocessor

3. Compilation: The C++ compiler translates the C++ program into machine code
(or object code).

4. Linking: The linker links the object codes (user written code and existing
libraries) to produce an executable file.

Note: compilers can combine (hide) steps 2-4 from the user.

Exercise 1:

• Type in the simple C++ code from the previous slide (save as hello.cpp)

• Generate an executable: g++ -o printhello hello.cpp

• Run the binary file: ./printhello

• Use the // to comment out various lines in the code, compile it and look at the
compiler error messages.

Balázs Kónya Programming for Scientists Tutorial 3a 6 / 17

basic Input / Output
I/O in C++ is managed via streams of bytes, where a stream is simply a sequence of
bytes

• cout << “some text to be printed out”;
• cout is the output stream object
• << is the stream insertion operator
• cout and << are used to display text strings on the screen

• cin >> Variable;
• cin is the input stream object
• >> is the stream extraction operator
• cin and >> are used to take input from the standard input stream (usually the

keyboard) and assign it to a variable

Note: more advanced I/O stream operations including character strings and
reading/writing to/from files will come later

Exercise 2:
• Write a simple program that asks for two integers and prints out their sum and

multiplication!
• Hint: you must declare the variables as e.g. int A, B
• Hint: you can chain output strings
• Hint: \n is the new line “character” or you can use the endl stream object
• Hint: it is possible to use the + and * operations within the output stream

Balázs Kónya Programming for Scientists Tutorial 3a 7 / 17

Variables
• A variable is a “name” that is associated with memory reserved for storing the

variable's value.

• You store data in a program by assigning values to variables

• Every variable has a name, a type, a value and a scope/lifetime:

• Name: series of characters consisting of letters, digits, and underscores.
Case sensitive. No spaces. May not begin with a number.

• Type: defines what sort of values the variable can store (e.g. int, float or
char)

• Value: a variable gets its value via the assignment operator (=)

• Scope: a variable can be global or local:

• Variables declared outside functions, including main(), are global. They
exist for the duration of a program and can be accessed from anywhere
in the code.

• Variables declared inside functions are local to those functions. Local
variables may be accessed only inside the block in which they are
declared. When a function begins, it allocates space on the stack to hold
its local variables. This space exists only while the function is active,
after the function returns, it deletes the allocated stack space, including
all local variables.

Balázs Kónya Programming for Scientists Tutorial 3a 8 / 17

Data types
• Exact ranges and memory sizes of data types may differ depending on compilers,

compiler options and operating systems

• Basic types: bool, char, int, float, double

• Modifiers: unsigned, signed (default), short, long

Balázs Kónya

Type (keyword) Size (byte) Range

char 1 byte -128 to 127 or 0 to 255

int 2 bytes -32,768 to 32,767

unsigned int 2 bytes 0 to 65,535

short int 2 bytes -32,768 to 32,767

long int 4 bytes -2,147,483,648 to 2,147,483,647

float 4 bytes (+/-) 1.17E-38 to 3.4E+38

(6 or 7 significant digits)

double 8 bytes (+/-) 2.2E-308 to 1.79E+308

(15 significant digits)

long double 16 bytes (+/-) 3.4E-4932 to 1.1E+4932

(appx. 19 significant digits)

Programming for Scientists Tutorial 3a 9 / 17

Basic operators
• In C++ the basic operators work the same way as in other languages, including the usual

operator precedence (first parentheses, then */%, then +-, then left to right rule)

• division (/) applied to integers will truncate the result (e.g. 5/2 equals to 2 in integer
division)

• ++: increment operator adds one to its operand

• --: decrement operator substracts one from its operand

• =: assignment operator to assign values to variables

Balázs Kónya

Operation C++ operator

Addition +

Subtraction -

Multiplication *

Division /

Modulus %

Decrement --

Increment ++

Assignment =

Programming for Scientists Tutorial 3a 10 / 17

Relational and logical operators

Balázs Kónya Programming for Scientists

Operation C++ operator

Equal to ==

Not equal to !=

Greater than >

Less than <

Greater than or equal >=

Less than or egual <=

Negation !

And &&

OR ||

XOR ^

Bitwise AND &

Bitwise OR |

Bitwise shifts << and >>

Tutorial 3a 11 / 17

Variables & basic operations

Exercise 3:

• Detemine the actual size of the various data types on your system: g++ compiler of
Ubuntu Linux installed on a 32 bit Virtual Machine.

• Hint: use the sizeof() function: e.g. sizeof(long double) will return the number of
bytes your system uses to store a long double variable

• Check the size of the types listed on the previous slide (char, short int, etc...)

Exercise 4:

• Check what happens when variable values are outside of variable range.

• Write a small code where you assign an initially correct value to a variable (e.g. short
int), then you modify the value of the variable by using one of the mathematical
operators so that the variable exceeds its range limit.

• try to use various operators

• Hint: the value of overflow will be out of range

Balázs Kónya

unsigned short int small, overflow;

small = 65535; // allowed range 0 to 65535

overflow = small+100;

Programming for Scientists Tutorial 3a 12 / 17

Functions in C++
• Theoretically all the code could be written inside a single main()

function ...

• However, for maintainability and manageability reasons, it is better to
break it into smaller procedures. These are called functions.

• Implementing a C++ function involves the following elements:

• Function definition

• Consists of header and body

• Body is the source code that makes up the function

• Header specifies return value, name and parameter list

• Function prototype

• Functions must be declared before they are called

• Prototypes usually specified in header files that are called via
the #include statement

• Function call

• The statement that executes a function is called a function call

• Function calls can be specified any time

• Can be used in assignments

• later topics: pass by reference or pointers

Balázs Kónya

int sumup(int x)

{

int sum, y = 5;

sum = x + y;

return sum;

}

int sumup(int);

int bignumber, inputnumber;

inputnumber = 12;

bignumber = sumup (inputnumber);

Programming for Scientists Tutorial 3a 13 / 17

Functions

Exercise 5: In this exercise, you're required to create a user-defined function to
capture the program logic of the main program and call that function from main().
Rewrite the following simple code:

Balázs Kónya

#include <iostream>

using namespace std;

int main()

{

int first, second, larger;

cout<<"enter the first number:" << endl;

cin>>first;

cout<<"enter the second number:" << endl ;

cin>>second;

// The program logic that can be turned into a function

larger = second;

if (first > second){

larger= first;

}

// Printing the result

cout << "The larger number is " << larger << endl ;

}

Programming for Scientists Tutorial 3a 14 / 17

Functions and scope of variables

Exercise 6: The program below will not compile because of scope errors. Investigate
which variables are used out-of-scope and comment out the corresponding lines.

Balázs Kónya

#include <iostream>

using namespace std;

int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {

int fooScope = 1; //Only visible within foo function

cout << "fooScope: " << fooScope << endl;

cout << "localScope: " << localScope << endl;

}

int main() {

cout << "globalScope: " << globalScope << endl;

{ //Any block declares a scope, even this useless one

int localScope = 3;

cout << "localScope: " << localScope << endl;

foo();

cout << "fooScope: " << fooScope << endl;

int globalScope = 100; // variable hiding, very bad practice!

cout << "globalScope: " << globalScope << endl;

}

cout << "localScope: " << localScope << endl;

cout << "globalScope: " << globalScope << endl;

}

Programming for Scientists Tutorial 3a 15 / 17

Further reading

• In case you quickly need a C++ environment to test some simple code:

• http://coliru.stacked-crooked.com/

• http://ideone.com/

• Standard C++ Foundation:

• https://isocpp.org

• About number representation:

• http://www.cprogramming.com/tutorial/floating_point/understanding_
floating_point_representation.html

• Introductory chapters from „the book”: The C++ Programming Language by
Bjarne Stroustrup: http://stroustrup.com/3rd.html

Balázs Kónya Programming for Scientists Tutorial 3a 16 / 17

Homework

• See Live@Lund

Balázs Kónya Programming for Scientists Tutorial 3a 17 / 17

