
Florido Paganelli MNXB01-2017 Bash Scripting 1/54Tutorial 3b

Other languages and C++
Writing bash scripts

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

MNXB01 2017

Florido Paganelli MNXB01-2017 Bash Scripting 2/54Tutorial 3b

Outline

Little theory about C++ environment, binding, scope

Introduction to scripting

Bash

Scripts

Variables in bash: environment, binding, scope

Control structures

Datasets

Automation using scripting

Genesis of an algorithm

Florido Paganelli MNXB01-2017 Bash Scripting 3/54Tutorial 3b

Variables, types in C++
A variable is an identifier, a name, for a memory location.

To define a variable is to give a name and a type to it. This tells
the compiler to find a free memory space for that variable.

int number;

The type indicates the kind of information stored inside the variable.
In languages like C++ it must be declared explicitly; such languages
are also called typed languages.

The type also defines the size of the allocated memory.

As the compiler reads your code (compilation time), it internally
creates table of names of variables with their types, size, tentative
memory pointers (static allocation).

Var name Var type Associated size Initial tentative
logical memory
location pointer

larger int sizeof(int)
e.g. 2bytes

10483392805

Florido Paganelli MNXB01-2017 Bash Scripting 4/54Tutorial 3b

Variables, types in C++
If the variable is not initialized, it can contain anything. It means that at runtime, when
the pointer actually will point to a real memory location, whatever is already there will
represent the variable value.

If we were to run the code immediately without initializing the variable, we're not
sure of what the content of the memory is:

number = 42;

10483...

Initial physical
memory location index

number

By assigning a value to a variable, we tell the
compiler what to write in the memory.

Var name Var type Associated size Initial tentative logical
memory location
pointer

value

larger int sizeof(int)
e.g. 2bytes

10483392805 42

10483...

42Initial physical
memory location index

number

010101010100010010101010
Some rubbish previously in memory

Florido Paganelli MNXB01-2017 Bash Scripting 5/54Tutorial 3b

Environment, binding
All the variable and function names “live” in a space called environment. You can
think of it as a table in the compiler containing all variable names and their
associations with memory chunks.

A name is said to be bound to that environment when its value is associated to a
memory index in that environment. In the table on the left we can see some bindings.

When we define a variable, the variable name is added to the environment

In languages like C++ we can see them in the form of pointers.

Binding can be:

Static, that is, decided at compile time

Dynamic, that is, decided at runtime
(yes one can change where in the memory that variable is pointing)

Environment Variable or function
name

Starting
virtual memory index assigned
by compiler (at compile time)

Starting
virtual memory index assigned
by operating system (runtime)

std cout Virt(#200), defined in std physical(#ABBC)

global

global foo() Virt(#1), defined in global physical(#ABCC)

foo() fooScope Virt(#2), defined in foo­>virt(#1) physical(#7945)

foo() Anonymous block#1 Virt(#3), defined in foo­>virt(#1) physical(#ABCC)

Anonymous block#1 blockScope Virt(#4), defined in Anonymous
block #1­>virt(#3)

physical(#ABCC)

Florido Paganelli MNXB01-2017 Bash Scripting 6/54Tutorial 3b

Visibility, scope
A variable is visible in an environment when its binding is
present in that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location (this
depends on languages)

Usually a function has its own environment, that is, a set of
variables in its own environment, and can see the variables in
other environments according to some rules.
These rules define the scope, or visibility, of a variable.

In the case of C++, blocks of code (the curly brackets {}) are
used to define new environments and scopes.

A variable defined in a block is always added to that block
environment and visible in that block's environment. For ease of use,
we say is visible in that block.

Q: What happens if one uses the same names in two blocks???

A: The memory to which that name is pointing is overridden by the last block
that could change the environment.
If you don't understand environments and scopes, you will only be able to verify
this at runtime.

Florido Paganelli MNXB01-2017 Bash Scripting 7/54Tutorial 3b

Functions and scopes in C++

In C++, the environment and scopes are managed by the use of
blocks of code.

The general inheritance rules are as follows:

A block inherits the environment from its parent block,
that is, all the variable and function names existing at the
moment of opening the block are imported in the block
environment.

Every variable name defined in a block is added in the
environment of that block.

If a variable with the same name is present in the environment,
the last defined variable overrides any other variable with the
same name within that block.

That is, it is not possible anymore to use the value
contained in variables with the same name defined
outside that block.

Florido Paganelli MNXB01-2017 Bash Scripting 8/54Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Florido Paganelli MNXB01-2017 Bash Scripting 9/54Tutorial 3b

Functions and scopes in C++
Variables in the
global scope

and visible to everyone

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

Florido Paganelli MNXB01-2017 Bash Scripting 10/54Tutorial 3b

Functions and scopes in C++
Variables in the
global scope

and visible to everyone

Variables
visible by foo()

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

Florido Paganelli MNXB01-2017 Bash Scripting 11/54Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment
no scope (compile time error!)

Florido Paganelli MNXB01-2017 Bash Scripting 12/54Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope (error!)

Florido Paganelli MNXB01-2017 Bash Scripting 13/54Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope

Variables visible in the
useless block

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Florido Paganelli MNXB01-2017 Bash Scripting 14/54Tutorial 3b

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Overridden variable
name!

Hidden variable!

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope

Variables visible in the
useless block

Florido Paganelli MNXB01-2017 Bash Scripting 15/54Tutorial 3b

Functions and scopes in C++ Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment

no scope

Variables visible in the
useless block

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Florido Paganelli MNXB01-2017 Bash Scripting 16/54Tutorial 3b

Notation
There's a set of symbols and idioms that are commonly used in command line tutorials and you should
know about. The description of the grammar of a command is often called synopsis, or brief summary.

Spacing. In general there is always a space between a command an every of its options, that is, every
word of a command that is shown in these slides.
However, in some cases it might be tricky to see it, and I will use the symbol . For example man bash

command
The boldface typeset is usually used to identify a command or part of the string that have to be written
exactly as you read them. In these slides I will also use the blue color, but you may not see it in the
printout.

command <argument>
The <> (angle brackets) are used to identify a mandatory argument of the command. The command will
NOT work without the things in the curly bracket.
The above usually means to run the command and to substitute the string <argument> with the
argument without angle brackets.
Remember, in most languages brackets have a special meaning. The special meaning of the angle brackets
was shown in the CLI tutorial.

command ARGUMENT
In man pages, sometimes capital letters are used instead of the angle brackets <>. The meaning is
exactly the same as the angle brackets, the capitalized string means mandatory. We will not use this
notation in this tutorial because it might be confusing, but you will find it in the linux man pages

command <argument> [<argument>]
The [] (square brackets) are used to identify and optional part of the command. The command will work
if you omit the content of the square brackets [].
However, if you add a second argument, it must be as defined within the angle brackets <>.

command [<argument1> | <argument2>]
The | (pipe symbol) is used to identify a mutually exclusive part of the command. You can use EITHER
<argument1> OR <argument2> but NOT both of them.
This is inherited from formal grammar notations.

Florido Paganelli MNXB01-2017 Bash Scripting 17/54Tutorial 3b

Goals and non-goals of this
tutorial

Goals:

Being able NOT TO PANIC when somebody gives you something
you've never seen before (will happen in your entire career)

Being able to write a bash script.

Understanding the concept of variable. Environment, binding,
scope.

Being able to search for information depending on a task one wants
to achieve.

Non-goal:

Become a script-fu master. It takes long time for the black belt :)

Become a coder. We cannot do this in a lecture, there's plenty of
dedicated courses out there

Florido Paganelli MNXB01-2017 Bash Scripting 18/54Tutorial 3b

Scripting vs coding

The word script is taken from a theatrical
play script: a description of the environment
on stage, a sequence of lines and gestures
to do

There is no practical difference between
writing code in a compiled language and a
scripted one.

The main difference is that scripted
languages do not require compilation.

Florido Paganelli MNXB01-2017 Bash Scripting 19/54Tutorial 3b

A bash script and its components

#!/bin/bash

put the output of cat in the variable CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head ­10)

write the content of CPUINFO to screen
echo "$CPUINFO"

 A bash script is nothing more that a sequence of commands
written in a file.

 The bash interpreter will process those in sequence, from the
top line to the bottom

 Like C++, is possible to define variables and control
structures in the scripting language.

 However, the bash script language has little to share with the
complexity of C++. All that it can do is to execute commands,
test conditions, and store things in variables.

 Consider the following code, a script called getcpuinfo.sh:

Florido Paganelli MNXB01-2017 Bash Scripting 20/54Tutorial 3b

Anatomy of a bash script

#!/bin/bash

put the output of cat in the variable CPUINFO

CPUINFO= $(cat /proc/cpuinfo | head ­10)

write the content of CPUINFO to screen

echo "$CPUINFO"

The first line has a special syntax: #! tells bash which
interpreter to use. It might be another shell!

Every other line starting with a
hash # is a comment. The
interpreter ignores everything
that follows until the end of
line. Useful to describe code to
human readers.

A variable definition is any string followed by a = symbol. It is a
convention to use capital letters.
Remember that case matters, cpuinfo is different from CPUINFO!

This tells bash to execute a
command and return its output.

A variable call is any variable name prefixed by the $ symbol.
Case does matter here. The quotes affect the output, that in this
case depends on how the echo command works.
The $ symbol stands for “give me the value contained in that
variable”

Florido Paganelli MNXB01-2017 Bash Scripting 21/54Tutorial 3b

Executing a script
The script can be made executable as if it was a command.

To run or execute those in the current directory, prefix them

with ./
pflorido@tjatte:~> ./getcpuinfo.sh
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz
stepping : 6
cpu MHz : 2127.650

pflorido@tjatte:~> chmod +x getcpuinfo.sh

Florido Paganelli MNXB01-2017 Bash Scripting 22/54Tutorial 3b

Variables, types in bash
A variable is an identifier, a name, for a memory location. Its definition
implies that the interpreter will find a free memory space for that
variable. As in C++, this space, if not initialized, can contain anything.

CPUINFO
10483...

CPUINFO = $(cat /proc/cpuinfo)

Initial Memory location
index

Assigning a value to a variable means putting such value inside that
memory location.

In BASH, variables have no explicitly defined type, because actually there is only
one type. It is implicitly assumed that the content is a string: a sequence of
characters. The maximum size depends on the system.

Allocation is always done dynamically depending on the assignment

10483... Contents of file /proc/cpuinfo

Var name Var type Associated size Initial tentative logical
memory location
pointer

value

larger Always string Depends on system
configuration

10483392805 Contents of
/proc/cpuinfo

010101010100010010101010
Some rubbish previously in memory

Florido Paganelli MNXB01-2017 Bash Scripting 23/54Tutorial 3b

Functions

Notice the curly brackets {}. These delimit a block of code

The block of code above contains the definition of the function
getmeminfo() that takes in input no parameters

The MEMINFO variable is defined inside the definition of the function.

One can define functions to reduce complexity and
increase readability

#!/bin/bash

definition of a function that gets meminfo
getmeminfo(){
MEMINFO=$(cat /proc/meminfo)
}

call to the function, it will change the environment
getmeminfo

write the content of MEMINFO to screen
echo "$MEMINFO"

Florido Paganelli MNXB01-2017 Bash Scripting 24/54Tutorial 3b

Environment, binding
All the variable and function names “live” in
a space called environment. You can think
of it as a table in the compiler or
interpreter memory containing all variable
names and their associations with memory
chunks.

A name is said to be bound to that
environment when its value is associated to
a memory index in that environment. In the
table on the left we can see some bindings.

When we define a variable, the variable
name is added to the environment

Environment Variable
name

Starting
memory
index

global PWD 48329

global SHELL 483985

global PATH 3412
cpuinfo.sh CPUINFO 10289
meminfo.sh MEMINFO 18458
meminfo.sh getmeminfo() 3515

In languages like BASH, we do not see memory indexes.
Binding can be:

Static, that is, decided at compile time
Dynamic, that is, decided at runtime
(yes one can change where in the memory that variable is pointing)

Florido Paganelli MNXB01-2017 Bash Scripting 25/54Tutorial 3b

Visibility, scope
A variable is visible in an environment when its
binding is present in that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location
(this depends on languages)

Usually a function has its own environment, that is, a
set of variables in its own environment, and can see
the variables in other environments according to
some rules. These rules define the scope, or
visibility, of a variable.

In the case of BASH, functions do not have own
environment. The scope or visibility of a variable in
bash is limited to a bash instance and all its
children. Let's see some examples.

Florido Paganelli MNXB01-2017 Bash Scripting 26/54Tutorial 3b

The BASH environment: export

Everytime one opens a terminal, the program bash is executed
and a new environment is created.

1 .Run the export command. You'll see all the environment
variables in the current bash session.

2. Create a new environment variable:
 export MYENV1=”This is a global env var”

3. Find the variable by running export, or just print its content with
 echo $MYENV1

4. Now open another bash instance by issuing the command bash. Run
export. You will find that MYENV1 is still there.

The environment is said to be inherited from the father process.

6. Open another terminal LXTerm and run export. MYENV1 should not be
 there.
 There is no environment inheritance between terminal windows.
 Close the terminal and go back to the old one where MYENV1 is defined.

Florido Paganelli MNXB01-2017 Bash Scripting 27/54Tutorial 3b

Preparing for the tutorial

Create a folder for git stuff (if you don't already have one) and change
directory into it

mkdir ~/git

cd ~/git

If you have never configured the git repository, clone it. A new folder MNXB01-
2017 will contain its changes:
git clone https://github.com/floridop/MNXB01­2017.git MNXB01­2017

If you have the repo for HW2b configured or just cloned, cd into it:

cd MNXB01­2017

Add my repo as the upstream remote:

 git remote add upstream https://github.com/floridop/MNXB01­2017.git

Pull the examples from github:

 git pull upstream master

Save the commit message if required. You will download all the changes/pull requests that I approved
during the week.

Change directory to the tutorial folder:

cd flopaganelli/Tutorial3bMaterial/bash

https://github.com/floridop/MNXB01-2017.git
https://github.com/floridop/MNXB01-2017.git

Florido Paganelli MNXB01-2017 Bash Scripting 28/54Tutorial 3b

Exercises
 Exercise 3b.1: Open geany, write and save the
following code as file getcpuinfo.sh

#!/bin/bash

put the output of cat in the variable CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head ­10)

write the content of CPUINFO to screen
echo "$CPUINFO"

 Exercise 3b.2: execute getcpuinfo.sh as
described in slide 21.

Florido Paganelli MNXB01-2017 Bash Scripting 29/54Tutorial 3b

Exercises

#!/bin/bash ­x

Exercise 3b.3:
What is the predefined PATH variable?

During the course we ran commands that did not need a ./ in front. The reason
is: the directory where our code is placed is not known by the system as a place
where executables are.

This list is contained in the predefined variable PATH.
Modify the first line as below, save and execute the script again:

echo “PATH value is $PATH”

Exercise 3b.4:

Enable Debugging to debug your script, that is, see what is
doing while running, modify the first line as below:

Save the file and execute it again. See the differences in the
output.

Florido Paganelli MNXB01-2017 Bash Scripting 30/54Tutorial 3b

BASH environment: scope
Consider the bash script envtest.sh with the following
content:

#!/bin/bash

test if an environment variable is defined
if ["x$MYENV1" == "x"]; then
 echo "MYENV1 not defined in the environment or empty. Please run"
 echo 'export MYENV1="This is my first environment variable"'
 exit 1;
fi

create an environment variable
MYENV2="This is my second environment variable"

write the content of the environment vars to screen
echo "Content of MYENV1: $MYENV1"
echo "Content of MYENV2: $MYENV2"

echo "Now check if MYENV2 still exists, with the command"
echo 'echo $MYENV2'

Florido Paganelli MNXB01-2017 Bash Scripting 31/54Tutorial 3b

BASH environment: scope
Run it: ./envtest.sh

Try to run the command:
 echo “Content of MYENV2: $MYENV2"

The “father” environment (where you ran the
bash command) DOES NOT inherit from
“children” (executed commands), but bash
scripts executed inside it have their own
environment that inherits from the father.

bash

bash

env1

env1 env2

father

child

bash
env1 env2 env3

child

child

Florido Paganelli MNXB01-2017 Bash Scripting 32/54Tutorial 3b

Importing an environment

In bash, there is a command that allows you to copy the environment defined
in a script to another script or bash instance. This command is source

Careful! The command also executes EVERYTHING inside the
BASH script!

If you now try

source ./envtest.sh
echo “Content of MYENV2: $MYENV2"
You'll see that the output of export will contain also MYENV2.
MYENV2 is now in the father bash environment.

As a default, when you start a terminal or execute the bash command, bash
sources the following files: /etc/profile , ~/.profile , ~/.bash_profile ,
~/.bashrc, and some other files, so that a set of default environment
variables are defined.

Run cat <filename> on the files listed above, where <filename> is one of
the files listed and see what is in them. Ask me questions if you don't
understand what you find there.

Florido Paganelli MNXB01-2017 Bash Scripting 33/54Tutorial 3b

Predefined variables in scripts
Prefixed by the $ symbol, they are instantiated automatically in bash at the start of the
script.

Script arguments: $#, $0, $1, $2….

$# is the number of arguments passed to the script

$0 is the name of the script itself as called to be executed

$1..n is each string that follows the name of the script.

Process info and status codes:

$$: process identifier (PID) of the script itself.
The PID is an integer number that the operating systems assigns to a binary file once it is ran, that
is, when it becomes a process. It uniquely identifies a running program until the machine is shut
down. See Lecture 3 slides.

$?: exit code of the last executed command (0 if it ended well, any other number otherwise)

$!: PID of last command executed in background

...

Various:

$PATH: list of paths where executable commands are

$PS1: prompt format

$SHELLOPTS: options with which the shell is run

$UID: User ID of the user running the script

...

Florido Paganelli MNXB01-2017 Bash Scripting 34/54Tutorial 3b

Predefined variables example

#!/bin/bash

predefinedvars.sh
call with: ./predefinedvars.sh arg1 arg2 arg3
#

print out info about arguments to this script
echo “Number of arguments: $#”
echo “Name of this script: $0”
echo “Arguments: $1 $2 $3 $4”

print this script's Process IDentifier:
echo “PID is $$”

Run the script. Remember to chmod +x predefinedvars.sh to make it
executable!

Exercise: check the output of some other predefined variable, in particular $* and
$@

Florido Paganelli MNXB01-2017 Bash Scripting 35/54Tutorial 3b

Conditions
Conditions are of different kinds depending on the languages.
The only condition that BASH can check is whether a
command execution terminates successfully.

An exit value of 0 is TRUE (termination successful),
all other values are FALSE (termination unsuccessful).

The way to specify conditions is as follow:

The square bracket [] or the test command can be used.
Documentation: man test

Example: test ­e <filename> checks if a file exists; if the file exists, the predefined
variable $? will contain 0, otherwise 1.

Try echo $? after running a test to see the exit value of the test command.

The double square bracket or extended test
[[<some test command>]]
Documentation: execute man bash and type: /\[\[expression

Example: [[­e /etc/services]]

The double parentheses for arithmetical expansion and logical operations.
<a> and should be integers.
 ((<a> &&))
Documentation: execute man bash and type: /\(\(expression

Florido Paganelli MNXB01-2017 Bash Scripting 36/54Tutorial 3b

Conditions: Exercises
Exercise 3b.5: Execute the following commands:

test ­e /etc

echo $?

test ­e /thisfiledoesnotexist

echo $?

[­e /etc]

echo $?

[­e /thisfiledoesnotexist]

echo $?

Exercise 3b.6: Execute the following commands:
 [[­e /etc]]

echo $?

 [[­e /doesnotexist]]

echo $?

Exercise 3b.7: Execute the following commands. Do you understand the meaning and results? If not, ask me.

true

echo $?

false

echo $?

((0 && 0))

echo $?

((1 && 0))

echo $?

((1 && 1))

echo $?

Florido Paganelli MNXB01-2017 Bash Scripting 37/54Tutorial 3b

Control structures

Enable the machine to decide on actions
depending on certain conditions.
(if..then...else..fi)

Allow the code to loop until a certain
condition is met (while...do...done)

Allow the code to loop for a definite
number of times or over a list of objects
(for...do...done)

Florido Paganelli MNXB01-2017 Bash Scripting 38/54Tutorial 3b

Control structures:
if ... then … else .. fi

The BASH syntax is as follows:

 if <condition>; then
 <command1>;[<command2>;…]

 else
 <commandA>;[<commandB>;…]

 fi

Florido Paganelli MNXB01-2017 Bash Scripting 39/54Tutorial 3b

Control structures:
if ... then … else .. fi

­le = less than or equal

#!/bin/bash
testif.sh
run with: ./testif.sh arg1 arg2 arg3
#
test that at least two arguments are passed to the script

if [[$# ­le 2]]; then
 echo "Not enough arguments. Must be at least 3!";
 # exit with error, not zero
 exit 1;
else
 echo "More than 2 arguments. Good!";
 # exit without error, zero
 exit 0;
fi

Florido Paganelli MNXB01-2017 Bash Scripting 40/54Tutorial 3b

The exit command

Exit is used to terminate the program exactly where exit is called, that is,
to break cycles and exit the program.

It takes in input the return value of the process:

0 for SUCCES

1 for ERROR

If you code cannot continue due to an error, you should always exit 1.
Otherwise the code will continue running without the required information.

You can test the exit value by checking the $? variable:
 echo $?

This works with any linux program: if there is an error, the process should
exit with $?  0

Exercise: check the exit value when you input no argument or three
arguments to ./testif.sh [<argument1> <argument2> ...]

Florido Paganelli MNXB01-2017 Bash Scripting 41/54Tutorial 3b

Control structures:
for ... do … done

Repeat something for a predefined
number of times or for each element in a
list.

Syntax:
for <i> in <list>; do
 <command1>;[<command2>;…]
done

Florido Paganelli MNXB01-2017 Bash Scripting 42/54Tutorial 3b

Control structures:
for ... do … done

Print types of files in some directory,
default to the /etc directory

#!/bin/bash
listfilestypes.sh
run with: ./listfilestypes.sh <directory>
#
Print the argument values
TARGETDIR=$1

if ["x$TARGETDIR" == "x"]; then
 TARGETDIR='/etc'
 MESSAGE="No argument found. Listing filetypes for the /etc directory by default"
else
 MESSAGE="Scanning filetypes for the ${TARGETDIR} directory"
fi

echo "$MESSAGE"

for somefile in ${TARGETDIR}/*; do
 echo "This is the file $somefile, with type:";
 # the file command tells you the type of a file.
 file $somefile
done

Florido Paganelli MNXB01-2017 Bash Scripting 43/54Tutorial 3b

Calling variables values in
different ways

$VAR returns the value contained in the variable
called VAR.

${VAR} returns the value contained in the
variable called VAR but it makes easier to spot
the boundaries of the variable name. It can be
used to concatenate string values and strings,
like in the previous code:
 ${TARGETDIR}/*;
it shows clearly that the name of the variable is
TARGETDIR

Florido Paganelli MNXB01-2017 Bash Scripting 44/54Tutorial 3b

Control structures:
for ... do … done

Print the arguments using different
condition approaches

#!/bin/bash
testfor.sh
run with: ./testfor.sh arg1 arg2 arg3 ...
#
Print the argument values

echo “Using lists of elements”
index=1 # Reset argument counter
for arg in "$@"; do
 echo "Arg #$index = $arg"
 let "index+=1"
 done # $@ sees arguments as separate words.

echo “Using C syntax for the condition”
for ((i=1 ; i <= $# ; i++)); do
 echo "Argument $i is ${!i}";
done

● #$var forces the content
of var to be a number

● Parameter substitution
 ${!var} Gets the value
of a variable with the
name $var instead of
var

Florido Paganelli MNXB01-2017 Bash Scripting 45/54Tutorial 3b

Control structures:
while … do … done

Keeps doing something as long as
<condition> is satisfied.

Syntax:
while <condition>; do
 <command1>;[<command2>;…]
done

Florido Paganelli MNXB01-2017 Bash Scripting 46/54Tutorial 3b

Control structures:
while … do … done

Ask the user to enter a variable value
(using the read command) until the string
end is entered

#!/bin/bash
testwhile.sh
run with: ./testwhile.sh
#
Continue asking numbers until the user writes “end”

while ["$var1" != "end"]; do # while test "$var1" != "end"
 echo "Input variable value (end to exit) "
 read var1 # Not 'read $var1' (why?).
 echo "variable value = $var1" # Need quotes because of "#" . . .
 # If input is 'end', echoes it here.
 # Does not test for termination condition until top of loop.
echo
done
exit 0

Florido Paganelli MNXB01-2017 Bash Scripting 47/54Tutorial 3b

Control Structures: Exercises

Exercise 3b.8: Change the iftest.sh code
to complain if the user did not write at least 5
command line arguments

Exercise 3b.9: Change the
listfiletypes.sh code to list the types of
files in the folder /tmp by default, that is, if no
command line argument is passed.

Exercise 3b.10: Change the testwhile.sh
code to exit when the user writes bye!

Florido Paganelli MNXB01-2017 Bash Scripting 48/54Tutorial 3b

Datasets

A dataset is some digital collection, maybe a file or a set
of files, that contains data we want to use.

A dataset usually has his own format.

A format is a set of rules that define in a rigorous manner
how the content of the dataset should be read, what are their
meanings and the relationship among the dataset information

The format can be a well know data format, more or less
standardized, or some custom data format that one needs to
learn

A description of the format is usually provided by the
community that generated the dataset. It is very rare that a
dataset contains information about its format.

Florido Paganelli MNXB01-2017 Bash Scripting 49/54Tutorial 3b

Sample data file
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing
this data?
Can we guess something about
the structure?

Florido Paganelli MNXB01-2017 Bash Scripting 50/54Tutorial 3b

Sample data file: investigation
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing
this data?

• It seems to be structured in
some way.

• There is some metadata
information at the top that
might hint at some known
format. Search “XML” on
google?

Can we guess something about
the structure?

● It seems to have opening and
closing tags <tag></tag>

● The tags seems to represent
a tree structure

Florido Paganelli MNXB01-2017 Bash Scripting 51/54Tutorial 3b

Automation and
composition of languages

Cornerstone of open source programming:
if something exist that does a task, and it does it
good, use it and do not rewrite code

Automation of repetitive tasks

Make use of interoperability within languages

Technique: identify subproblems and separate
tasks, increasing “debuggability”

Choose the right command/language for each
subtask

Florido Paganelli MNXB01-2017 Bash Scripting 52/54Tutorial 3b

Genesis of an algorithm:
a top down approach

Write a list of each main task translating
the description of the problem.

Open geany and start writing down as
comments the steps to the algorithm. You
can write that on paper first.

An example of this process is the
homework skeleton in git.

Florido Paganelli MNXB01-2017 Bash Scripting 53/54Tutorial 3b

Homework 3b

It's still work in progress. But when I notify you that the homework is ready, pull my
repository again:

git pull upstream master

Read the problem specification in:
<MNXB01­2017 git folder>/flopaganelli/HW3b/README.md

Examine the skeleton file in git:
<MNXB01­2017 git folder>/flopaganelli/HW3b/pokemoninfo.sh.skeleton

Rename the skeleton to pokemoninfo.sh. Complete the skeleton file with the requested
lines of code.
Test that it does what is requested! The final result should look like the files in the result
folder in the github repository:

<MNXB01­2017 git folder>/flopaganelli/HW3b/result

Commit the code to your fork in the folder with your name as in HW2b, in a subfolder
called HW3b. For my name it would look like:

<MNXB01­2017 git folder>/flopaganelli/HW3b/

Hint: Check the solutions of previous year assignments on the course webpage:
http://www.hep.lu.se/courses/MNXB01/index-2016.html
http://www.hep.lu.se/courses/MNXB01/index-2015.html

http://www.hep.lu.se/courses/MNXB01/index-2016.html
http://www.hep.lu.se/courses/MNXB01/index-2015.html

Florido Paganelli MNXB01-2017 Bash Scripting 54/54Tutorial 3b

References

Bash scripting:
http://tldp.org/LDP/abs/html/

http://tldp.org/LDP/abs/html/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

