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Abstract

The goal of this exercise is to develop a toy simulation that can test various ways of measuring
the elliptic flow. The material has been prepared for the course MNXB01 where the compulsory
part of the exercises is covered in two tutorials (pages 10–16).
The material can be found at: http://www.hep.lu.se/courses/MNXB01/.

The document is organized in this way that Sec. 1–3 describes background information and then
the exercise begins in Sec. 4. Finally, the appendix contains three advanced exercises for the inter-
ested student.
Section 1 describes what elliptic flow is and Sec. 2 describes how it is measured. Section 3 describes
how one can generate random numbers that looks like the measurements we have for elliptic flow to
test different ways to measure v2.

To solve the exercises on the first day it is important to read Sec. 1 and Sec. 3, while Sec. 2 is
mostly relevant for the exercises on the second day.
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1 The Quark-Gluon Plasma and elliptic flow
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Figure 1: Left: QCD phase diagram [1]. Right: illustration of how elliptic flow arises in non-central heavy-ion
collisions.

Elliptic flow is a special phenomenon that occurs in collisions of heavy ions, e.g., at the Large
Hadron Collider (LHC) at CERN, which is located on the boarder between Switzerland and France.
In high-energy heavy-ion collisions a phase of deconfined quarks and gluons called the Quark-Gluon
Plasma (QGP) is produced, see Fig. 1. After production, the QGP expands and cools off before
it finally hadronizes. It is by studying the produced hadrons that we attempt to understand the
properties of the QGP. Surprisingly it has been observed that the expansion of the QGP medium is
the same as expected for an almost ideal fluid. This means that the ratio of the shear viscosity to
entropy density is so small that the expansion is nearly reversible and indicates that there are very
strong correlations in the QGP.

In a heavy-ion collision the reaction plane is spanned by the impact parameter vector and the
beam axis, see Fig. 1 right. When the impact parameter is small we talk about central collisions
and when it is large we have peripheral collisions. In most collisions the volume of nucleons that are
actually interacting in the two nuclei is not symmetric, see Fig. 1 right. The expansion is therefore
asymmetric, being faster in the reaction plane than in the plane perpendicular to this. This gives
rise to so-called elliptic flow: the distribution of particles in the final state is asymmetric in the
azimuthal plane. The elliptic flow will clearly have a dependence on the impact parameter of the
collisions, and therefore in practice one always analyzes it for narrow regions of centrality. In general
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the elliptic flow is largest in mid-central collisions where the impact parameter is of order the nuclear
radius.

In hydrodynamical flow calculations the QGP is treated as a macroscopic medium and the result is
the 3 dimensional matter density and associated flow velocity field. Because of this velocity boost the
elliptic flow also depends on the transverse momentum of the particles and peaks at pT ≈ 3 GeV/c,
see Figure 2 right. There is also a mass dependence such that heavier particles are more affected
by the flow. This can easily be understood if one considers a particle with mass m produced at rest
(p = 0) and then boosts it with the transverse fluid flow velocity βT where we find the laboratory
pT = βTγm.

2 How to measure elliptic flow

Figure 2: Left: Data from the STAR experiment used to estimate v2 using the event plane method (2 < pT <
6 GeV/c). Note that Ψplane is what we call Ψ2 in the text. The elliptic flow v2 is ≈0.1 for the most central
collisions (0-10%) and ≈0.2 for the most peripheral collisions (31-77%) [2]. Right: Results from the ALICE
detector at LHC showing v2 as a function of pT extracted using 4-particle correlations [3]. The grey bands show
comparable results from the STAR experiment at a beam energy that is ≈10 times smaller indicating that indeed
we have a Quark-Gluon Plasma with similar properties at both energies.

There are several ways to measure the elliptic flow. In this exercise we will test some of the
different ways.

2.1 Event Plane method

In the event plane method we estimate the reaction plane in each collision and then align the particles
relative to this plane [4]. In this way we can average over many events.

If the particles in an event is distributed according to:

f(ϕ) ∝ 1 + 2v2 cos[2(ϕ−Ψ2)], (1)
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then the event plane we want to determine is Ψ2.
It can be shown (good optional exercise) that Ψ2 can be estimated as:

Ψ2 =
1

2
tan−1

( 〈sin(2ϕ)〉
〈cos(2ϕ)〉

)
, (2)

where it is smart to use the ROOT function TMath::ATan2(y, x). The brackets 〈x〉 means that
one should take the average of x over all tracks in a single event.

One then histograms all tracks relative to this plane in each event. After measuring over many
events one fits the final histogram using a constant (normalization) times Eq. 1, see Fig. 2 left for
an example.

The elliptic flow measured this way is often denoted v2{EP}. It is in this authors opinion the
most easy method to understand and one can easily visually check that one did not make a grave
mistake, but is not as precise as the other methods.

2.2 2-Particle correlations

The Event Plane method is criticized for the need to first determine the event plane and then measure
v2 since the statistical precision with which we can determine the event plane event-by-event will
affect the result (even one typically corrects for this using a resolution function). One can avoid this
by studying 2-particle correlations 1:

〈cos[2(ϕ1 − ϕ2)]〉 = Re〈ei2(ϕ1−ϕ2)〉
= Re〈ei2(ϕ1−Ψ2−ϕ2+Ψ2)〉
≈ Re

[
〈ei2(ϕ1−Ψ2)〉〈ei2(ϕ2−Ψ2)〉

]

= 〈cos[2(ϕ1 −Ψ2)]〉〈cos[2(ϕ2 −Ψ2)]〉
= v2

2,

(3)

where the average is over all pairs, and the assumption in line 3 is that there are no direct correlations
between particle 1 and 2, but only indirect correlations through the common event plane Ψ2.

In this way we determine the 2-particle correlation factor

〈2〉 = 〈cos[2(ϕ1 − ϕ2)]〉

=
1

M(M − 1)

M∑

i

M∑

j 6=i
cos 2(ϕi − ϕj),

(4)

where M is the particle multiplicity. We then define the v2 extracted using 2-particle correlations
as:

v2{2} =
√
〈2〉. (5)

As there is no event plane determination the average indicated by the brackets are over all events!
In the simulations we will have the same number of tracks in each event and so one can just average
first in an event and then average over events. The quantity one wants to average is 〈2〉.

1The biggest gain is when we go to higher order correlations, see Advanced Topic 2.
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2.3 2-Particle correlations using the Q-vector

To determine the 2-particle correlations we need a nested double loop, e.g, if we have 1000 tracks we
loop for track 1 over the remaining 999 particles, for track 2 over the remaining 998 particles, and
so on. Especially when one goes to 4-particle correlations and higher this becomes impossible due
to the time it takes.

It turns out that one can determine

Qn =

M∑

j

einϕj

=




M∑

j

cosnϕj


+ i




M∑

j

sinnϕj


 ,

(6)

with which it is easy to show that:

〈2〉 =
|Q2|2 −M
M(M − 1)

(7)

In this way one just have to loop one time over all tracks to calculate 〈2〉. To calculate v2{2} we
do an event average and uses Eq. 5.

3 Different Ways to Generate Random Numbers Ac-

cording to a Distribution

To be able to test the different methods we want to be able to generate random numbers that are
distributed like Eq. 1. Here we shall not discuss how one can generate a so-called flat distribution
of random numbers between 0 and 1, but show how one can use these to generate any distribution.

In the following example we always wants to generate numbers distributed according to sinx and
we will show plots from the macro generate_sinx.C that can be found here:
wget http://www.hep.lu.se/staff/christiansen/rootgenerate_sinx.C.

Note that for the exercises only the final numerical method will be used, but the other method
are include here for completeness.

3.1 The box method (exact)

This is a simple method that works as long as one generates random numbers in a restricted range,
but is not always very efficient. We generate two random numbers x and y. We scale x so that it
gives a random point in the restricted range we want to generate random numbers in. Now we scale
y so it matches the range from 0 to the maximum value of the function f(x) we want to generate.
Now we accept x if y < f(x) and reject x otherwise.

Figure 3 gives an example of this method.
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Figure 3: The box method. Left: 2-dimensional histograms showing all attempted (x, y) blue, and those
accepted in red. Right: The distribution of accepted x values. The red function is a fit to the generated data.

3.2 The analytical (exact)

In some cases one can integrate and invert the probability density distribution. In this case, e.g.:

P (x) =
1

2
sinx

∫ π

0
P (x′)dx′ = 1

y =

∫ x

0
P (′x)dx′ =

1

2
[− cosx′]x0

=
1

2
(1− cosx), so that

x = cos−1(1− 2y)

(8)

This means that if we generate a random number y between 0 and 1, then we should just apply
the transformation x = cos−1(1− 2y) to get random numbers distributed according to sinx.

From this method one will get a similar distribution as Figure 3 right, but one has a 100%
efficiency.

This method cannot always be used, because it is not always possible to invert a function.
Sometimes it can be used even when x can take unbounded values, e.g., if we want to distribute
according to an exponential distribution exp−x/k. There are also unbounded cases where one can
combine this with the box method.

3.3 The histogram method (numerical)

This method can be used to numerically approximate any function in a restricted range and can
also be used in the case where one only has a histogram, e.g., with real data and want to generate
random numbers according to this.
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Figure 4: The histogram method. Left: Cumulative probability for 100 bins. Right: The distribution of
generated x values. The red function is a fit to the generated data.

We first choose a binning and then fill in each bin the cumulative function value in this bin. Then
we normalize it to the total integral so that in the last bin we have the value 1.

Now it works in some sense exactly like a numerical approximation of the analytical method. We
generate a random value y and we find the corresponding lowest bin where y is smaller than the
histogram value. Now we use as a random number the x that corresponds to this bin. Figure 4 gives
an example of this method.

This is the least elegant method, but it is quite simple to implement and can easily be generalized
to 2d and 3d distributions, but one will of course have binning effects even if one can smooth out
this, in particular

3.4 ROOT’s function method (numerical)

ROOT has a generic random number generation for functions (TF1) as explained in the ROOT
class description 2

Double_t TF1::GetRandom(Double_t xmin, Double_t xmax)

Return a random number following this function shape in [xmin,xmax]

The distribution contained in the function fname (TF1) is integrated

over the channel contents.

It is normalized to 1.

For each bin the integral is approximated by a parabola.

The parabola coefficients are stored as non persistent data members

Getting one random number implies:

- Generating a random number between 0 and 1 (say r1)

2See http://root.cern.ch/root/html/TF1.html.
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- Look in which bin in the normalized integral r1 corresponds to

- Evaluate the parabolic curve in the selected bin to find

the corresponding X value.

The parabolic approximation is very good as soon as the number

of bins is greater than 50.

IMPORTANT NOTE

The integral of the function is computed at fNpx points. If the function

has sharp peaks, you should increase the number of points (SetNpx)

such that the peak is correctly tabulated at several points.

This means that it is similar to the histogram in the method, but it uses a parabolic curve to
avoid the worst binning effects.

One should always be a bit careful when using methods provided by libraries where one does not
know exactly how it is implemented.
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4 Exercises

In the following one can find the list of exercises for day 1 and for day 2.

The goal on day 1 is as a minimum to make a code that can generate a certain number of events,
each with a certain amount of tracks, where each track is represented by a ϕ angle generated accord-
ing to Eq. 1 using ROOT’s function method. The events will be stored in a text file. Some optional
exercises are suggested.

The goal on day 2 is as a minimum to make a code that can read in the tracks and analyze them
using the 2-particle correlation method. Some optional exercises are suggested.

For the interested student, several advanced topics are included in the back that are difficult to
solve, but shows important advanced aspects of flow analyses.

4.1 Day 1 (tutorial 7a)

The goal of the day 1 program is to make a simple event generator that can generate a track
distribution with a certain elliptic flow v2 and store them in a text file.

4.1.1 Exercise 1.1: study the example (compulsory)

To help understand the code one can download a “cheat sheet” from here:
wget http://www.hep.lu.se/staff/christiansen/ROOT_cheat_sheet.pdf

Download the example generate_sinx.C using the Linux command:
wget http://www.hep.lu.se/staff/christiansen/rootgenerate_sinx.C

Run the method and read Sec. 3.4 to understand how it works. Note that in the top of the macro
there is information about how to load it and how to call the function.

4.1.2 Exercise 1.2: make a v2/ϕ function generator (compulsory)

Extend the rootfunc method to be able to generate random numbers according to Eq. 1. In all cases
we set Ψ2 = 0. Figure 5 gives an example of how results from the final working program could look.

Technical help:

1. Copy rootgenerate_sinx.C to a new file: EG_v2.C

2. Rename all places sinx to v2

3. Rename the histogram hSin to hPhi. It will now contain the generated phi distribution.

4. Change the code to work for v2. The new rootfuncgenerate function should also take the
new argument Double_t v2.
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Figure 5: The distribution of generated ϕ values. The red function is a fit to the generated data.

Make sure after each step that the code still works before going to the next step.

Note that in real data the total transverse momentum will have to be 0. This constrain we do
not have here and so the data we generate does not necessary have to match even idealized collision
data. For larger number of tracks this is likely not an issue.

4.2 Exercise 1.3: make an event generator (compulsory)

First we need to convert this to a generator that now should take 3 arguments: Int_t nEvents,
Int_t nTracks (in each event), and Double_t v2.

1. Add the Int_t nTracks argument and make a temporary storage for the ϕ angle, e.g.:

Double_t phi[nTracks]; // array to store phi angles

// generate nTracks phi angles

for (Int_t nt = 0; nt < nTracks; nt++) {

// Fill the array

phi[nt] = v2Func->GetRandom();

}
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To test this we move the part where we fill the histogram, hPhi, with the ϕ values in another
loop

for(Int_t i = 0; i < nTracks; i++) {

hPhi->Fill(phi[i]);

}

Make sure after each step that the code still works before going to the next step.

4.2.1 Exercise 1.4: store the result in a text file (compulsory)

Here we want to output the generated data to a normal text file.

1. First just write the information to the standard output using the normal cout operator like
this:

Event 0

nTracks 10

0 : 0.969496

1 : 4.96748

2 : 1.21711

3 : 4.87544

4 : 5.41607

5 : 3.08065

6 : 4.88619

7 : 5.34159

8 : 0.18106

9 : 5.36895

Event 1

nTracks 10

0 : 4.43049

1 : 5.82934

2 : 0.939175

3 : 4.88806

....

2. Now we want to open a file and redirect the output to the file. We need to include the fstream

(input/output file stream class) header file.

// open output file

ofstream file("phi_dist.dat");

....

// write to file

file << "Event " << ne << endl
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....

// close file

file.close();

4.2.2 Solution to day 1

The solution to the day 1 exercises that should be mailed in is

• a macro called EG_v2.C

• the macro have to be compilable in ROOT without any warnings:
.L EG_v2.C+

• the macro must have a function called:
void rootfuncgenerate(Int_t nEvents, Int_t nTracks, Double_t v2)

• the function should produce a histogram called hPhi that is drawn and shows the generated ϕ
distribution

• the function should produce a text file called
phi_dist.dat

with the generated events.

4.3 Day 2 (tutorial 7b)

The goal of the day 2 program is to read back in the data from the output file and to analyze the
data using the 2-particle correlation method described in Sec. 2.3.

4.3.1 Exercise 2.1: read back in the file (compulsory)

Make a new ROOT macro called Analyze_v2.C with a function:
void analyze_v2_2particle().

1. Now we want to open a file and read back the input in a formatted way. We need to include
the fstream (input/output file stream class) header file.

Int_t nEvents = 0; // event counter

string helpString; // help variable

// open input file

ifstream file("phi_dist.dat");

Int_t eventNo = -1;

while(file >> helpString >> eventNo) {

cout << "Reading event : " << eventNo << endl;

nEvents++;
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Int_t nTracks = -1;

file >> helpString >> nTracks;

cout << "Event contains " << nTracks << " tracks" << endl;

Double_t phi[nTracks];

Int_t trackNo;

for(Int_t nt = 0; nt < nTracks; nt++) {

// Read back the phi values

....

}

// Here we want to analyze the phi values in the next exercise

}

4.3.2 Exercise 2.2: extract v2{2} using the standard method (compulsory)

Read careful Sec. 2.2.
Now you have to implement the 2-particle correlation analysis.

To help with the 2-particle correlation function part I give here an example of how the nested loop
can be done:

// 2-particle (Sec. 2.2)

Double_t sum_cos2_diff = 0;

for(Int_t i = 0; i < nTracks; i++) {

for(Int_t j = i+1; j < nTracks; j++) {

sum_cos2_diff += 2*TMath::Cos(2*(phi[i]-phi[j]));

}

}

// calculate <2> for this event

....

// Update <2> event average for Q-vector and 2-particle

....

From the event average 〈2〉 you can calculate v2{2} using Eq. 5.
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4.3.3 Exercise 2.2: extract v2{2} using Q vectors (compulsory)

Now you have to implement the 2-particle correlation analysis.
To help with the 2-particle correlation function part I give here an example of how the loop can be
done:

// Q vector (Sec. 2.3)

Double_t sum_cos2 = 0;

Double_t sum_sin2 = 0;

// 2-particle (Sec. 2.2)

Double_t sum_cos2_diff = 0;

for(Int_t i = 0; i < nTracks; i++) {

// Compute Q vector

sum_cos2 += TMath::Cos(2*phi[i]);

sum_sin2 += TMath::Sin(2*phi[i]);

// Compute 2-particle

for(Int_t j = i+1; j < nTracks; j++) {

sum_cos2_diff += 2*TMath::Cos(2*(phi[i]-phi[j]));

}

}

// Average <2> for this event for Q-vector and 2-particle

....

// Update <2> event average for Q-vector and 2-particle

....

And then one can compare the methods event-by-event and see they give exactly the same, e.g.,
by printing out:

v2 (average of 100 events) = 0.0493544

Q: v2 (average of 100 events) = 0.0493544

Note that one can only calculate the v2{2} for an event when 〈2〉 > 0. Also note that the
2-particle method (without the Q vector trick) is extremely slow for large nTracks.

4.3.4 Exercise 2.3: statistical uncertainty and fitting (optional)

The idea here is to go through Advanced topic 3 with step 1 and step 2 done in a much simpler way.
Instead of step 1 and 2 make 10–40 different data files using the code developed on day 1. Analyze

them using the code just made and make a histogram of v2{2}. What does this histogram tell about
the statistical precision of the measurement?
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Likely one has to generate one file and analyze it, since we overwrite the files. Note that if the
random number generator is initialized with the same seed the random values will follow the same
pattern. To initialize the random generator with a random seed one has to call it like this:
TRandom* randGen = new TRandom(0);

Finally one can implement the fitter in step 3 following the instruction in Sec. C.3. But first one
have to implement the event plane method, see Sec. 2.1. To do the event plane method you need
to loop two times: firstly, to estimate the event-plane, Ψ2 and secondly to fill the histogram with
ϕ−Ψ2. Make sure that ϕ−Ψ2 is in the actual range of your histogram (add or subtract 2π if it is
outside this range).

4.3.5 Exercise 2.4: compare the two methods (optional)

Which method does the best job of calculating v2?

How does this depend on nTracks and Nevents?
Bonus question: in the event plane method one has trivial correlations between each particle and

the event plane. Since the event plane in each event just tries to maximize the v2 one in general
overestimates v2. One can calculate the event plane for each track where one ignores the track itself.
If one does this one instead always finds a too small v2. Can you understand why? (Hint: study the
event plane resolution in your code and think about what it does to v2).

4.3.6 Solution to day 2

The solution to the day 2 exercises that should be mailed in is

• a macro called Analyze_v2.C

• the macro have to be compilable in ROOT without any warnings:
.L Analyze_v2.C+

• the macro must have a function called:
void analyze_v2_2particle()

• the function should produce a histogram called hPhi that is drawn and shows the ϕ distribution
read in from the file phi_dist.dat

• the function should calculate v2{2} using the Q-vector method and write the result to the
standard output
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A Advanced Topic 1: Triangular flow
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Figure 6: Triangular flow. Left: fluctuations can give rise to a triangularity in the created medium. Right: by
going to the 1% most central collisions one can suppress v2 and directly observe the triangular correlations using
2-particle correlation techniques as maxima at 0, 2/3π and 4/3π radians (0, 120, and 240 degrees). Notice that
the red curve is calculated from the 2-particle flow coefficients v2, v3, v4, v5 [6].

In 2005 the PHOBOS experiment at RHIC have shown that to understand the flow fluctuations
observed in Au-Au and Cu-Cu collisions one needs to take into account fluctuations in the positions
of nucleon-nucleon collisions. This means that the impact parameter plane is not always the best
symmetry plane to use. In 2010 two experimental physicists, Alver and Roland [5], showed that the
same fluctuations could give rise to triangular flow, v3, see Fig. 6 Left:

f(ϕ) ∝ 1 + 2v3 cos[3(ϕ−Ψ3)], (9)

The ALICE experiment at LHC confirmed this prediction by going to the most central collisions
where the geometric elliptic flow is suppressed, see Fig. 6.

A.1 Step 1: extend your code to handle v3 instead of v2

In this part assume that Ψ3 = 0.
This should be straight forward, but recall that v3 has 3 peaks and in general one therefore needs

cos 3ϕ instead of cos 2ϕ and so on.
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A.2 Step 2: extend your code to handle v2 and v3 at the same time

In simulations, and confirmed by measurements, the symmetry angles Ψ2 and Ψ3 are uncorrelated.
Ψ2 is geometrical and close to the impact parameter angle, while Ψ3 is related to fluctuations. This
is necessary to implement to get the event plane method to work.
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B Advanced topic 2: 4-particle correlations

It is known that in addition to correlations through the event plane Ψ2 there are also correlations
from decays, e.g.: φ → K+ + K−. These correlations are called non-flow and can be removed by
studying higher order correlation functions which is the goal of this advanced exercise.

B.1 Step 1: implement non-flow

An easy way to implement non-flow is for each particle (or some fraction of particles) to add one
extra particle with exactly the same ϕ angle 3.

Do this in your code and check that you now estimate a wrong v2{2}.

B.2 Step 2: implement the 4-particle correlation function

In the same way as we defined the 2-particle correlation factor we can define the 4-particle correlation
factor:

〈4〉 = 〈cos[2(ϕ1 + ϕ2 − ϕ3 − ϕ4)]〉. (10)

It turns out that by using the 4-particle cumulant one can subtract the 2-particle correlations to
v2 so that one is only left with genuine 4-particle correlations:

v2{4} = 4
√
−〈4〉+ 2〈2〉2. (11)

In this way we expect to be insensitive to the non-flow we just added before.

The problem with 〈4〉 is that if you have e.g. 1000 tracks in each event then it will take forever
to calculate the correlation in a nested loop (over i, j, k, l). The trick is to use the Q-vector. It can
be shown that:

〈4〉 =
|Q2|4 + |Q4|2 − 2 · Re[Q4Q

∗
2Q
∗
2]

M(M − 1)(M − 2)(M − 3)

− 2
2(M − 2) · |Q2|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
.

(12)

This analytic result and many more can be found here [7].
Implement this estimate and show that now you obtain the correct v2 independent of non-flow.

While v2{2} converges fast and works well even for a few particles in general v2{4} converges much
slower and one therefore needs to run with a lot of tracks in each event 4.

3The advantage of this method is not only that it is easy, but one can in fact calculate the exact effect on the 2-particle
correlation analytic. If you do this, then try to understand the nTrack dependence (Hint: consider the number of pairs).

4The number of 4-particle associations grows approximately as (Ntracks)4 so when calculating higher order correlations
one therefore also has to be careful that this can impose a significant bias towards the subsample of the events with the
most tracks
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B.3 Final remarks about flow fluctuations

Due to fluctuations the v2 varies event-by-event. As the 2- and 4-particle correlation functions
measures v2 to some power they are biased by these fluctuations. The easiest case to understand is
the 2-particle correlation function. If σ2

v2 = 〈v2
2〉 − 〈v2〉2, then it is clear that one in general with

v2{2} measures (neglecting non-flow):

v2{2}2 = 〈v2〉2 + σ2
v2, (13)

so that v2{2} ≥ 〈v2〉.
For 4-particle correlations one finds that when σv2 � 〈v2〉 then:

v2{4}2 = 〈v2〉2 − σ2
v2, (14)

so that v2{4} ≤ 〈v2〉.
This means that we can estimate the fluctuations as:

2σ2
v2 = v2{2}2 − v2{4}2 (15)

Use your code to study this relation (remove non-flow).
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C Advanced topic 3: the statistical uncertainty

It can sometimes be difficult to calculate the statistical uncertainty on a quantity that is measured
in a complex way like v2{2}. Here we will illustrate how it can be done by subdividing the total
sample into smaller samples and then from the spread of those assign an uncertainty for the average.

C.1 Step 1: extend your code to make 1000s of analyzes

In this part you want to know the answer for a certain configuration of Ntracks and Nevents. To
find this you can simply just change your code so it will make Nexperiments. Then you can make a
histogram with the results of e.g. v2{2} for each experiment and then in the end you will have a
histogram which is approximately Gaussian and where the mean should be very close to the input
v2 and where the σ is the statistical uncertainty.

C.2 Step 2: implement an unbiased estimator for the mean

In this part we now want to divide the original Nevents sample into 10 smaller samples (Nevents/10)
that we then analyze independently (Nexperiments = 10). In this way we can obtain:

σ2
1/10 =

1

Nexperiments − 1

Nexperiments∑

i=1

(v2,i − 〈v2〉)2, (16)

and then we estimate the statistical uncertainty for the full sample to be:

σ =
σ1/10√

Nexperiments

. (17)

The important thing to notice is that one should divide by Nexperiments − 1 and not Nexperiments

in Eq. 16. This estimator for σ1/10 is called the unbiased estimator because it takes into account
that we use 1 degree of freedom to estimate also 〈v2〉. If you would use the generator v2 in Eq. 16
then you should in fact use Nexperiments and not Nexperiments − 1.

Test the performance of this method, i.e., compare to the result found in step 1.

Note that since we simulate only few events here (vs millions in real experiments) then the
method is not so good. This is because v2{2} depends non-linearly on 〈2〉. The fluctuations in 〈2〉
must be rather symmetric and so if they are large this gives an asymmetric influence on v2{2}, e.g.
if it fluctuates down to 0 then v2{2} decreases by 100% while if it fluctuates up a factor 2 v2{2} only
increases by 40% 5. Due to the 10 times smaller statistics one also easier gets negative values for 〈2〉
that one has to decide how to handle. For this reason it is recommended to have a large number of
events and a large v2, e.g., 1000 events with 100 tracks and v2 = 0.1.

Bonus question: what is the motivation to subdivide into 10 subsamples and not 3 or 50?

5One can actually do the σ analysis for 〈2〉 instead to reduce these problems.
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C.3 Step 3: implement fitter

In the event plane method one actually obtains also a statistical uncertainty from the ROOT fitter.
In this step we want to implement a simple fit program and use that to fit the event plane data

and estimate the statistical uncertainty.
If we normalize the event plane histogram properly we only need to fit the v2:

f(ϕ) = 1 + 2v2 cos[2ϕ]. (18)

The idea is to make a 1 dimensional histogram where on the x-axis we vary v2 and on the y-axis
we calculate χ2:

χ2(v2) =
∑

bins

(f(ϕ)− (hist value in bin))2

(hist uncertainty in bin)2
. (19)

ROOT will keep track of the statistical uncertainty for a histogram when you call the method
Sumw2() just after creating it. The statistical uncertainty in each of the event plane histogram bins
is in this case just:

√
Nentries/Normalization.

If you select a reasonable range of parameters for the guessed v2 then you should now see a
minimum in your histogram. This is the best estimate of v2 given the current binning. Write a loop
into your code that finds this minimum. Now it turns out that if the fit has good quality then the
so-called reduced χ2 should be close to 1. The reduced χ2 is defines as χ2/Ndof, where the Ndof is
the number of degrees of freedoms given as the number of bins minus the number of fit parameters,
so in this case it is number of bins minus 1.
The reduced χ2 quantifies the actual deviation between the fitted curve and the data points and
gives a measure of how similar they are compared to the actual statistical uncertainty of your mea-
surements.
If the reduced χ2 is much less than 1 then it means that your statistical uncertainty is too large or
you have too many parameters in your fit. If the reduced χ2 is much larger than 1 it means that
your statistical uncertainty is too small and likely there are systematic uncertainties that you need
to take into account.

Test if the reduced χ2 is close to 1 in your case when you vary the number of histogram bins, the
number of events, and/or the number of tracks.

The statistical uncertainty on the fitted v2 is approximately the absolute distance in v2 you have
to step away from the minimum for the χ2 to be larger by 1 (this step is in χ2 and not in the reduced
χ2). Estimate this in your program and compare to what ROOT gets for the fit.

In more advanced fitters the fitting routine estimates a local derivative in χ2 space around the
current value and then uses that to find where to go next, in this way stepping towards the minimum.
For situations where there are more than one minimum more advanced methods are needed.
In general things gets even more complicated (unstable and time consuming) the more parameters
one has in the fit.
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