
1. Kinematics, cross-sections etc 
 

A study of kinematics is of great importance to any experiment on particle scattering. It is 
necessary to interpret your measurements, but at an earlier stage to determine where to put your 
detectors so that the particles will actually pass through them.  
The word kinematics is used to describe the relations which follow from the conservation of 
energy and momentum. For the most part in this course we will be dealing with fast particles and 
relativistic kinematics. Before looking at how to apply energy-momentum conservation in 
different situations, we need to remind ourselves of the fundamentals: the Lorentz transformation 
relating observables in different reference frames; and the relationships between different 
quantities such as energy, mass and velocity for a high-energy particle in a given reference frame. 
We describe the interactions of high-energy particles in terms of the exchange of force particles, 
such as the photon. These fleeting virtual particles appear not to obey all the rules. However 
longer-lived real particles do obey the conservation laws and they are the ones you actually detect 
after scattering processes. They are ‘on the mass shell’. 
 

1.1 Basics - 4-vectors and Lorentz transformations 
 

In introductory relativity the formalism is usually developed by reference to intervals in space and 
time in different frames. In the study of particle interactions we are (almost) exclusively 
concerned with the application to particle energy and momentum. Using the concept of a 4-
vector, we can relate the transformation equations as applied to energy and momentum to those 
for space and time, or indeed other quantities such as charge and current densities which will not 
concern us here. A 4-vector consists of a “time” or scalar component and a “space” or (3-)vector 
component. These components behave like scalars and vectors, respectively, when the coordinate 
system is rotated. However they are mixed by a Lorentz transformation or boost between frames 
moving with a constant relative velocity. 
 
A note on units: we will consistently use particle momenta and masses measured in energy units, usually MeV or 
GeV. Thus there are no factors of c in any of our relativistic relationships. This not only tidies up the algebra, but also 
introduces a symmetry into the Lorentz transformation equations. In the case of the space-time relations, however, it 
is usual and convenient to measure space and time in different units - space intervals in metres and time in second, or 
multiples thereof. We therefore retain the factor of c here in such a way that all components of the space-time 4-
vector are expressed as distances. 
 
Momentum and energy form the four components of a 4-vector (E, px, py, pz) which behaves 
much like the space-time 4-vector (ct, x, y, z). The transformations of energy and momentum are 
then, taking the z direction along the transformation: 
 

E'=γ(E−βpz) 
px' = px
py' = py

pz '=γ(pz−βE) 
 
where  



c
v

=β
  

  

21
1

β−
=γ

. 
 
The components of any other 4-vector transform in an analogous way.  
 
It is frequently the case that we are interested only in transformations along the direction of the 
particle’s momentum. Examples include the transformation between the LAB and CM frames for 
a pair of interacting particles, or between a particle’s rest frame and some moving frame. In this 
case we do not need to worry about the components of p, and the equations take the simple, 
symmetric form: 
 

E' = γ(E−βp) 
p '= γ(p−βE) 

 
It is a general property of the Lorentz Transformation that it leaves some quantity invariant (just 
as a rotation in 3 dimensions leaves the length of a 3-vector quantity unchanged). In the case of 
the energy-momentum transformation the quantity E2−p2 has the same value in all reference 
frames (as can be checked explicitly using the transformation equations). 
 
 

1.2 The relativistic energy-momentum-mass relations 
 

1.2.1 Energy and momentum in rest and moving frames 
 

Suppose (for the moment) that a particle has energy E0 in its rest frame, where its velocity and 
momentum are zero. In another frame where its velocity is v=βc, the Lorentz transformation gives 
 

E'=γ(E0−  0) 
p '=γ(0−βE0) 
 
or 
 
E'=γE0

p '=βγE0
 
 
Of course the rest frame energy E0 is equivalent to the particle mass m, and we can see that the 
Lorentz invariant quantity E2−p2 is equal to the square of this energy. Thus relativity gives the 
following expressions relating the various kinematic quantities: 
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The high-energy or relativistic limit of these relationships gives E=p, β=1. For this reason it is 
common to use the energy and momentum of a particle interchangeably. 
 

1.2.2 Time dilation and mean decay distance 
 

It is relevant here to derive an expression for the decay distance of a moving particle. If the 
particle lives for a time τ in its rest frame, in a moving frame this becomes γτ due to time dilation. 
During this time it travels a distance vγτ. Using v=βc, and substituting from the above relations, 
we can see that 
 

m
cpc τ

=τβγ=distanceDecay 
 

 
i.e., the mean decay distance of a particle is proportional to its momentum. 
 
 

1.3 Problems in relativistic kinematics 
 
Some important concepts in particle physics: 
 

• The Centre-of-Mass frame for a system of interacting particles is that in which the total 
momentum summed over all particles is zero. The system may be a beam particle and 
stationary target, a pair of colliding beams, the final state particles produced in an interaction 
or some subset of these. The Centre-of-Mass frame is also called the Centre-of-Momentum or 
CM frame. In a sense it is analogous for the system of particles, seen as a whole, to the rest 
frame for a single particle. 

 
• The laboratory or LAB frame is that in which our experimental apparatus is at rest! In 

different experiments it may be the rest frame of one of the initial state particles (fixed target), 
or the same as the CM frame for the initial particles - or neither. 

 
• The invariant mass of a system of particles is the system’s total energy in its CM frame. It 

may be found from the total energy and momentum in any frame: 
 

      ( ) ( ) ( 222 MassInvariant Momentum TotalEnergy Total += )
 



• The total CM energy in an experiment is the invariant mass of all initial (or final) state 
particles. The symbol s is used for the square of the total CM energy. From the previous 
bullet we can see that s is given by: 
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• The 4-momentum transfer in an interaction is the energy-momentum change of one of the 

particles between initial and final states. It may be thought of as the energy and momentum 
carried by the exchanged virtual particle. These quantities vary according to which frame we 
are working in, but there is a quantity analogous to the mass of the virtual particle which is 
invariant under changes between frames. This quantity is usually denoted by the symbol q²: 

 

     ( ) ( 222 change MomentumchangeEnergy −=q
 
Examples of problems: 
 
The solution of problems frequently involves the calculation of Lorentz invariant quantities, such 
as q² or s. Conservation of energy and momentum are used to give relationships between initial 
and final state quantities, and the relationships between energy, momentum and mass for the 
individual particles applied to simplify the results. 
 
We illustrate the techniques used by means of a series of examples. The following useful 
relationships can be derived for different experimental situations: 
 
• In a fixed-target experiment, where beam particles of rest mass mB and energy EB are incident 

on stationary target particles of mass mT, the total CM frame energy is s , where 

. The last term in this expression is the dominant one for large EBTTB Emmms 222 ++=
B. In 

such an experiment, if it is required to have CM energy larger than a certain value M, this  
      translates into a requirement that EB be larger than  
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• If a short-lived particle is produced in an interaction and its decay products are measured, the 

mass of the short-lived particle is equal to the invariant mass of the system of decay products. 
In the case of a two-body decay to particles with energies EB, EC much larger than their 
masses, the invariant mass is  

( )BCcos12 θ−CB EE . 
 
• In a scattering experiment, where the energy and angle of deflection of the outgoing scattered 

particle are measured, the q² of the scattering is  
θ′+′− cos222 2 ppEEm .  



Here m is the mass of the scattered particle, E, E' its energy before and after the scattering and p, 
p' the corresponding momenta, with θ the angle of scatter. In the high-energy limit the expression 
simplifies to  

2sin4 22 θ′−= EEq
. 

 
• For elastic scattering we can use energy and momentum conservation to relate E' and the 

angle θ. This allows us to write q² in terms of E' alone:  

       ( )EEmq T ′−−= 22

     where mT is the target particle mass. 
 

1.4 Cross Sections and decay rates 
 

In most cases we are concerned with the measurement of individual events. However it is 
important to remember that our ultimate aim in performing an experiment, whether in particle 
physics or any of the other applications of particle detection techniques, is to collect large 
numbers of events. The important information will come from measuring the rates of different 
types of event. In this section we discuss briefly the two most important quantities that are 
measured in particle physics experiments: the cross section for a particular interaction, and the 
decay rate for an unstable particle. 
 
The rate at which interactions occur will be proportional to some factors dependent on the 
experimental setup, such as beam rates and target densities, and to a quantity known as the cross 
section σ. The cross section for a particular reaction is the fundamental measurable quantity 
which incorporates all effects such as the strength of the underlying interaction, propagator 
factors for virtual exchange particles, and dependence on the available energy, or phase space.  
 
It is called a cross section because it has the units of area. It may be thought of as a small effective 
area centred on the target such that if the incident particle should pass through this area then the 
reaction would occur. This picture is not physically realistic, but it gives the correct rates. If we 
think of the cross section as an area perpendicular to the direction in which the particles are 
moving, then this area will not be affected by a Lorentz transformation along the direction of the 
incident particles and the cross section will be the same in the LAB and CM frames. Cross 
sections are commonly given in a unit called a barn (10−28 m2), or multiples thereof such as 
nanobarns nb or picobarns pb. 
 
There are different expressions relating the cross section to the observed interaction rate W, 
depending on the experimental setup. In a fixed target experiment, if the target area is larger than 
the beam so that all beam particles pass through the target, we can write 
 

σ⋅ρ⋅= lrW  
 

where r is the beam particle rate, ρ the number density of target particles per unit volume and l 
the length of the target, so that ρl gives the number of target particles per unit area.  



If, on the other hand, the beam is fairly wide with a flux J particles per unit area per second, the 
expression is 

σ⋅⋅= nJW  
 

with n the total number of target particles. 
 
In a colliding beam setup, things are more complicated. The particles in each beam are stored in 
“bunches”, which arrive at the collision point with a certain frequency. The interaction rate will 
depend on the numbers of particles in the bunches, the collision frequency and the size of the 
bunches - the smaller the bunch, the higher the rate, since the particles in a small bunch are 
packed more closely together. Some expressions are 
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where n1,2 are the numbers of particles per beam, f the collision frequency and A is some effective 
overlap area for the beams. In the second line this is re-written in terms of the beam currents 
I=nf, i.e. number of particles per unit time in each beam. 
 
The product of these factors for a colliding beam machine is usually referred to as the luminosity. 
It can be thought of as the “brightness” of the source of particle collision processes. It has units 
(area×time)−1, so that when multiplied by the cross section the result is a rate of interactions. 
Clearly the luminosity can be defined also for the fixed target configurations discussed above, 
although this is less usual. 
 
1.4.1 Differential cross-sections 
 
The quantity defined above is the total cross section σ for an interaction. If you are to get as much 
information as possible from a scattering process you can observe, not only that an interaction 
occurred, but also how the resultant scattered or transformed particles come out of the target 
afterwards. 
 

θ φ
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The cross section σ may be written as a sum of contributions for different directions of emission 
of the final particles. For two-body final states it is only necessary to give the direction for one 
particle as the conservation of energy and momentum then determines the direction for the other.  
The particle direction is defined by the polar angle θ and the azimuthal angle φ in a set of axes 
such that z is along the beam.        
This gives the differential cross-section 
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which is defined  by 
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where dW  is the rate for particles emitted into the solid angle dΩ (= d(cosθ)dφ ) in the direction 
given by θ and φ. 
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The reaction cross-section σ is found by integrating the differential cross section over all solid 
angles. 
 
Often the beams and targets are unpolarised and any dependence on the azimuthal angle φ 
averages out. In this case the differential cross section is a function of θ only. 
 
If the interaction rate is measured as a function of other variables such as the outgoing particle 
energies, other types of differential cross section may be measured. It is possible also to 
generalise the idea and measure multiply differential cross sections, e.g.  
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as a function of the energies of 2 final state particles. 
 
1.4.2 Particle Decays 
 
The rate of decay of a short-lived particle can also yield valuable information about particle 
properties, such as the strength of the interaction by which the decay proceeds. The important 
quantity here is the decay rate W=1/τ in the particle rest frame. τ here is the mean lifetime, which 
for a moving particle is extended by time dilation, as discussed above. For very short-lived 
particles, a related quantity is the width Γ, or uncertainty in the mass, given by Γ=ηW. For a 
particle with several different modes of decay, one can also define partial decay rates Wi or 
widths Γi for individual modes. The total width is the sum of all partial widths. 


