## **Experimental Astroparticle Physics** (a short introduction)



Alessandro De Angelis INFN & Univ. Udine; IST Lisboa

March 2006

Lectures 1, 2 & 3

## What is Astroparticle Physics (Particle Astrophysics?)



1) Use techniques from Particle Physics to advance Astronomy

2) Use input from Particle Physics to explain our Universe, and particles from outer space to advance Particle Physics

In this lecture I'll concentrate on the 2<sup>nd</sup> topic

#### A quick look to our Universe

Ι

#### **Astronomy Scales**



 $1 \text{ pc} \sim 3.3 \text{ ly}$ 

## **Our Galaxy: The Milky Way**





 $-90^{\circ}$ 





## What do we know about our Universe ?

- Many things, including the facts that...
  - Particles are coming on Earth at energies
     10<sup>8</sup> times larger than we are able to
     produce...
  - The Universe expands (Hubble ~1920): galaxies are getting far with a simple relationship between distance & recession speed









#### Hubble's law



#### **Once upon a time... our Universe was smaller**



## How far in time ?

- Extrapolating backwards the present expansion speed towards the big bang
   T ③ 1/H<sub>0</sub> ~ 14 billion years
   (note that the present best estimate, with a lot of
  - complicated physics inside, is  $T = 13.7 \pm 0.2$  Gyr)
- Consistent with the age of the oldest stars

## Hubble law in 2003: supernovae



SNIa occurs at Chandra mass, 1.4  $M_{sun} \Rightarrow$  'Standard Candle'

measure brightness  $\rightarrow$  distance: B = L /  $4\pi d^2$ measure host galaxy redshift  $\rightarrow$  get recession velocity test Hubble's Law: v = H d, at large distances

#### **Expansion with Supernovae Ia**



$$\Omega_\Lambda \sim 0.7$$

12

## Time & temperature (=energy)

- Once upon a time, our Universe was hotter
  - Expansion requires work (and this is the most adiabatic expansion one can imagine, so the work comes from internal energy)



 $T \sim \frac{15}{\sqrt{2}} 10^9 K$ 



# Decoupling

 $\gamma \leftrightarrow$  particles+antiparticles  $\gamma \leftrightarrow$  proton-antiproton  $\gamma \leftrightarrow$  electron-positron (...)

then matter became stable

Matter density

1010

108

### **Particle Physics after Big Bang**



THE QUEST FOR HIGHER ENERGIES IS ALSO A TIME TRAVEL

# The Universe today: what we see is not everything



Gravity:  $G M(r) / r^2 = v^2 / r$ enclosed mass:  $M(r) = v^2 r / G$ 



Luminous stars only small fraction of mass of galaxy

#### Π

#### **Dark matter searches**

#### **Dark matter searches**

- Astronomy Dark Matter Candidates
  - Invisible macroscopic objects
    - Non-luminous objects
    - Black Holes
- Particle Dark Matter Candidates
  - Neutrinos
  - WIMPs



## **Gravitational Lensing by Dark Matter**



Black holes, etc.



#### Reconstructed matter distribution



## **Gravitational Lensing Searches** for MACHOs





t 20

## Neutrino Mass is not enough

 $P_{dis} = \sin^2 2\theta \sin^2(1.27 \ \Delta m^2 L/E),$   $\Delta m \text{ mass difference, } \theta \text{ mixing}$ angle, E energy of v, L oscillation length

Recent evidence of m>0 from -SuperKamiokande -SNO -K2K

-KamLAND



**Mixing** ~ maximal

**ΔM~ 0.01 eV** 

#### **Candidates: only WIMPS are left** M > ~ 40 GeV f if SUSY (LEP)

| Dark matter could<br>be composed of -<br>any, some or -<br>possibilities |                                                                                                                                 |                                                                                |                                                                                                                     |                                                                                             |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Name                                                                     | Neutrinos                                                                                                                       | WIMPs                                                                          | MACHOs                                                                                                              | Black holes                                                                                 |
| What<br>they<br>are                                                      | Subatomic relatives<br>of the electron that<br>have no electrical<br>charge and interact<br>only weakly with<br>ordinary matter | (Weakly interacting<br>massive particles)<br>Also known as cold<br>dark matter | (Massive compact<br>halo objects) Dim<br>Jupitex-size planets<br>or white dwarf stars<br>made of ordinary<br>matter | Objects with<br>gravitational<br>fields so intense that<br>light cannot escape<br>from them |
| Pros                                                                     | Known to exist in great numbers                                                                                                 | Existence is predicted by theories                                             | The simplest theory                                                                                                 | Strongly predicted by general relativity                                                    |
| Cons                                                                     | cannot account for<br>existing cosmic<br>structure                                                                              | Are hypothetical                                                               | So many would be<br>required that it seems<br>unlikely that all the<br>dark matter could be                         | Their presence in such<br>abundance should<br>have been detected<br>piready                 |

made of them

11

1



#### **WIMP Direct Detection: modulation**

Elastic interaction on nucleus, typical  $\chi$  velocity ~ 250 km/s ( $\beta$  ~ 10<sup>-3</sup>)



## WIMPS & gamma emission

Some DM candidates
 (e.g. SUSY χ

$$\chi^{\pm}, W$$

particles) would lead to monoenergetic  $\gamma$  lines through annihilation into  $\gamma\gamma$  or  $\gamma Z$ :  $E_{\gamma} = m_{\chi} / m_{\chi} - m_{Z}^{2}/4 m_{\chi}$ => clear signature at high energies but: loop suppressed



 annihilation into qq -> jets -> n γ's
 => continuum of low energy gammas difficult signature but large flux

#### Results: common sense suggests a look @the GC...





# X emission (variable) $\gamma$ emission

#### γ-ray detection from the Galactic Center

- detection of  $\gamma$ -rays from GC by Cangaroo, Whipple, HESS, MAGIC
- $\sigma_{source} < 3'$  ( < 7 pc at GC)
  - hard E<sup>-2.21±0.09</sup> spectrum fit to  $\chi$ -annihilation continuum spectrum leads to:  $M_{\gamma} > 12 \text{ TeV}$
  - other interpretations possible (probable)

Galactic Center: very crowded sky region, strong exp. evidence against cuspy profile =>





#### **Matter/Energy in the Universe: Conclusion**

#### Must be something new

MATTER / ENERGY in the UNIVERSE



$$\Omega_{\text{total}} = \Omega_{\text{M}} + \Omega_{\Lambda} \sim 1$$

matter dark energy

Matter:

 $\Omega_{\rm M} = \Omega_{\rm h} + \Omega_{\rm v} + \Omega_{\rm CDM} \sim 0.3$ baryons neutrinos cold dark matter stars, gas, brown dwarfs, white dwarfs

28

#### ΙΙ

### **High Energy Particles from space**

## **Cosmic Rays**

Primary cosmic rays produce showers in high atmosphere charged particles protons ions electrons neutral particles photons neutrinos

at ground level :~ 1/s/m<sup>2</sup>



100 years after discovery by Hess origin still uncertain

Primary:

p 80 %, α 9 %, n 8 %
e 2 %, heavy nuclei 1 %
γ 0.1 %, ν 0.1 % ?



Secondary at ground level: v 68%  $\mu 30\%$ p, n, ... 2\%

## **Types of Cosmic Ray Detectors**





# The future of HEP?

• Higher energies are not the full story...

Also small x (lost in the beam pipes for collider detectors)

## Particle Acceleration $\mathbf{E} \propto \mathbf{B} \mathbf{R}$



R ~ 10 km, B ~ 10 T  $\Rightarrow$  E ~ 10 TeV

#### Tycho SuperNova Remnant



#### R ~ $10^{15}$ km, B ~ $10^{-10}$ T $\Rightarrow$ E ~ 1000 TeV

(NB.  $E \propto Z \rightarrow Pb/Fe$  higher energy)

# **Particle Physics** $\Rightarrow$ **Particle Astrophysics Terrestrial Accelerators Cosmic Accelerators** Active Galactic Nuclei Diameter of collider **Binary Systems** SuperNova Remnant LHC CERN, Geneva, 2007 Cyclotron Berkeley 1937

Energy of accelerated particles

## **Ultra High Energy from Cosmic Rays**



Ultra High Energy Particles arrive from space for free: make use of the $m_{35}$ 

## Charged Cosmic Ray Energy Spectrum


### Features of Cosmic Ray Spectrum



 $dN/dE \sim E^{\alpha} + \delta$ Ingredients of models: Source acceleration:  $\alpha = -2.0$  to -2.2,..Source cut-off E <10<sup>18</sup> Z  $\left[\frac{R}{kpc}\right] \left[\frac{B}{uG}\right] eV$ Diffusion models  $\delta = -0.3$  to -0.6GZK cut-off on CMB  $\gamma E \approx 7 \ 10^{19} \text{ eV}$ 

'Conventional Wisdom':Galactic SNR $E < 3 \ 10^{18} \text{ eV}$ Galactic losses $E > 4 \ 10^{14} \text{ eV}$ Extragalactic $E > 3 \ 10^{18} \text{ eV}$ exotic $E > 7 \ 10^{19} \text{ eV}$ 

### Mass composition from shower depth



### Mass composition at knee

Average shower depth and ratio  $N_{\mu} / N_e$  sensitive to primary mass (NB. Mass composition extracted is very sensitive to Monte Carlo simulation)



KASCADE ⇒ series of knees at different energies: p,He,..,C,..,Fe. E(Knee)  $\propto Z$  ⇒ knee due to source confinement cut-off ?



log<sub>10</sub> Distance (Mpc)

# Explanations of Ankle/ $E > 10^{20} eV$ events

### Astronomy type explanations

- 'Bottom-Up' : acceleration
  - pulsars in galaxy,
  - radio lobes of AGN (proximity a problem due to GZK, also should see source)

### Particle Physics type explanations

- 'Top-Down' : decay of massive particles
  - GUT X particles with mass  $> 10^{20}$  eV and long lifetimes
  - Topological defects
- New Physics (Lorentz violation)
- Just wrong data from AGASA...

### HiRES (Fly's Eye)







# A new concept: EUSO (and OWL)

• The Earth atmosphere is the ideal detector for the Extreme Energy Cosmic Rays and the companion Cosmic Neutrinos. The new idea of EUSO (2010?-) is to watch the fluorescence produced by them from the top



# **Experimental Astroparticle Physics** (a short introduction)



#### Alessandro De Angelis INFN & Univ. Udine; IST Lisboa

March 2006

Lecture 4

### IV

# Detectors for multimessanger astrophysics

# We see only partly what surrounds us

- We see only a narrow band of colors, from red to purple in the rainbow
- Also the colors we don't see have names familiar to us: we listen to the radio, we heat food in the microwave, we take pictures of our bones through X-rays...



### What about the rest ?

• What could happen if we would see only, say, green color?



## The universe we don't see

• When we take a picture we capture light

(a telescope image comes as well from visible light)

- In the same way we can map into false colors the image from a "X-ray telescope"
- Elaborating the information is crucial





### **Pulsars**

- Rapidly rotating neutron stars with
  - T between  $\sim 1$ ms and  $\sim 1$ s
  - Strong magnetic fields (~100 MT)
  - Mass  $\sim$  3 solar masses
  - R ~ 10 Km (densest stable object known)
- For the pulsars emitting TeV gammas, such an emission is unpulsed





## **Multi Messenger Astronomy**



Radio Telescope ( Bonn)

Radio



Optical Telescope



X - ray Satellite (INTEGRAL/ESA)



 $\gamma\,$  - ray Telescope

| m<br><u>10<sup>-5</sup></u> | c m<br>1 0 <sup>-4</sup> | m m<br>1 0 <sup>- 3</sup> | 10-2 | <u>10<sup>-1</sup></u> | μm<br>1 | 10 | 1 0 <sup>2</sup> | n m<br>1 0 <sup>3</sup> | Å<br>10 <sup>4</sup> | 10 <sup>5</sup> | <u>10<sup>6</sup></u> | <u>10<sup>7</sup></u> | 108 | <u>109</u> | 1 0 <sup>1 0</sup> | 1 0 <sup>1 1</sup> | 1 0 <sup>1 2</sup> | 10 <sup>13</sup> | 1 0 <sup>1 4</sup> | 10 <sup>15</sup> | e V |
|-----------------------------|--------------------------|---------------------------|------|------------------------|---------|----|------------------|-------------------------|----------------------|-----------------|-----------------------|-----------------------|-----|------------|--------------------|--------------------|--------------------|------------------|--------------------|------------------|-----|
| R a d                       | lio                      |                           | In   | fraro                  | uge     | Op | o tiq u e        |                         |                      | I               | <mark>R</mark> ayon   | s X                   |     |            | Ray                | ons (              | <b>Jam</b> n       | 1 a              |                    |                  |     |

### View of sky in Galactic Coordinates in four different photon wavelengths



Visible lightX - rays $\gamma$  rays

### **Centre of Galaxy in Different Photon Wavelengths**



#### Radio 408 Mhz

#### Infrared 1-3 $\mu m$

Visible Light

#### Gamma Rays

# **Multi-Messengers to see Whole Universe**



Distant universe invisible in high energy photons

### need neutrinos



### But also...



- Neutrino astrophysics
- Graviton (?) astrophysics

# **Surprises in history of astrophysics**

#### New instruments often give unexpected results:

| Telescope  | User               | date  | Intended Use                | Actual use                              |  |  |
|------------|--------------------|-------|-----------------------------|-----------------------------------------|--|--|
| Optical    | Galileo            | 1608  | Navigation                  | Moons of Jupiter                        |  |  |
| Optical    | Hubble             | 1929  | Nebulae                     | Expanding<br>Universe                   |  |  |
| Radio      | Jansky             | 1932  | Noise                       | Radio galaxies                          |  |  |
| Micro-wave | Penzias,<br>Wilson | 1965  | Radio-galaxies, noise       | 3K cosmic<br>background                 |  |  |
| X-ray      | Giacconi           | 1965  | Sun, moon                   | neutron stars<br>accreating<br>binaires |  |  |
| Radio      | Hewish,Bell        | 1967  | Ionosphere                  | Pulsars                                 |  |  |
| γ-rays     | military           | 1960? | Thermonuclear<br>explosions | Gamma ray<br>bursts                     |  |  |

With future new detector can again hope for completely new discoveries  $_{56}^{56}$ 

The high-energy γ spectrum  $E_{\gamma} > 30 \text{ keV} (\lambda \sim 0.4 \text{ A}, \nu \sim 7 \text{ 10}^9 \text{ GHz})$ 

Although arbitrary, this limit reflects astrophysical and experimental facts:

- Thermal emission -> nonthermal emission
- Problems to concentrate photons (-> telescopes radically different from larger wavelengths)
- Large background from cosmic particles

# Study of exotic objects: γ-ray bursts (History, I)

- An intriguing puzzle of today's astronomy... A brief history
  - Beginning of the '60s: Soviets are ahead in the space war
    - 1959: USSR sends a satellite to impact on the moon
    - 1961: USSR sends in space the 27years old Yuri Gagarin
  - 1963: the US Air Force launches the 2 Vela satellites to spy if the Soviets are doing nuclear tests in space or on the moon
    - Equipped with NaI (Tl) scintillators





# Study of exotic objects: γ-ray bursts (History, II)

 1967 : an anomalous emission of X and γ rays is observed. For a few seconds, it outshines all the γ sources in the Universe put together. Then it disappears completely. Another in 1969...

After careful studies (!), origination from Soviet experiments is ruled out

- The bursts don't come from the vicinity of the Earth
- 1973 (!) : The observation is reported to the world
- Now we have seen hundreds of gamma ray bursts...



 $\frac{1}{10} + 90$ 

BATSE GRBs in Galactic Coordinates

## **Transparency of the atmosphere**



# Detection of a high E photon

- Above the UV and below
   "50 GeV", shielding from the atmosphere
  - Below the e+e- threshold + some phase space ("10 MeV"),
     Commton /scintillation

Compton/scintillation

- Above "10 MeV", pair production
- Above "50 GeV", atmospheric showers

   Pair <-> Brem



# Consequences on the techniques

The earth atmosphere (28 X<sub>0</sub> at sea level) is opaque to X/γ Thus only a satellite-based detector can detect primary X/γ



- The fluxes of h.e.  $\gamma$  are low and decrease rapidly with energy
  - Vela, the strongest  $\gamma$  source in the sky, has a flux above 100 MeV of 1.3 10<sup>-5</sup> photons/(cm<sup>2</sup>s), falling with E<sup>-1.89</sup> => a 1m<sup>2</sup> detector would detect only 1 photon/2h above 10 GeV
  - => with the present space technology, VHE and UHE gammas can be detected only from atmospheric showers
    - Earth-based detectors, atmospheric shower satellites
- The flux from high energy cosmic rays is much larger

# Satellite-based and atmospheric: complementary, w/ moving boundaries





# Satellite-based detectors: figures of merit

- Effective area, or equivalent area for the detection of  $\gamma$  $A_{eff}(E) = A \text{ x eff.}$
- Angular resolution is important for identifying the  $\gamma$  sources and for reducing the diffuse background
- Energy resolution
- Time resolution

# X detectors

- The electrons ejected or created by the incident gamma rays lose energy mainly in ionizing the surrounding atoms; secondary electrons may in turn ionize the material, producing an amplification effect
- Most space X- ray telescopes consist of detection materials which take advantage of ionization process but the way to measure the total ionization loss differ with the nature of the material

Commonly used detection devices are...

- gas detectors
- scintillation counters
- semiconductor detectors



# X detection (direction-sensitive)

A coded mask (array of opaque blocks) is disposed so that a point source at infinity projects on a position sensitive detector a pattern characteristic of the source direction



Coded mask



Position sensitive detector

# X detection (direction-sensitive)



Unfolding is a nice mathematical problem  $\frac{1}{68}$ 

# **INTEGRAL/CHANDRA**

 INTEGRAL, the International Gamma-Ray Astrophysics Laboratory is an ESA medium-size (M2) science mission



- Energy range 15 keV to 10 MeV plus simultaneous X-ray (3-35 keV) and optical (550 nm) monitoring
- Fine spectroscopy ( $\Delta E/E \sim 1\%$ ) and fine imaging (angular resolution of 5')
- Two main -ray instruments: SPI (spectroscopy) and IBIS (imager)
- Chandra, from NASA, has a similar performance

# γ satellite-based detectors: engineering

- Techniques taken from particle physics
- γ direction is mostly determined by e+econversion
  - Veto against charged particles by an ACD
  - Angular resolution given by
    - Opening angle of the pair m/E ln(E/m)
    - Multiple scattering  $(20/p\beta) (L/X_0)^{1/2}$  (dominant)
    - => large number of thin converters, but the # of channel increases

(power consumption << 1 kW)

 If possible, a calorimeter in the bottom to get E resolution, but watch the weight (leakage => deteriorated resolution)
 Smart techniques to measure E w/o calorimeters (AGILE)



# GLAST

- $\Box$   $\gamma$  telescope on satellite for the range 20 MeV-300 GeV
  - hybrid tracker + calorimeter
- International collaboration US-France-Italy-Japan-Sweden
  - Broad experience in high-energy astrophysics and particle physics (science + instrumentation)
- Timescale: 2007-2011 (->2016)
- Wide range of physics objectives:
  - Gamma astrophysics
  - Fundamental physics

### A HEP / astrophysics partnership





# **GLAST: the instrument**

- Tracker Si strips + converter
- Calorimeter
   CsI with diode readout

(a classic for HEP)

- 1.7 x 1.7 m<sup>2</sup> x 0.8 m height/width = 0.4  $\Rightarrow$ large field of view
- 16 towers  $\Rightarrow$  modularity


# **GLAST: the tracker**



- Si strips + converter
  - High signal/noise
  - -Rad-hard
  - Low power
- 4x4 towers, of 37 cm  $\times$  37 cm of Si
- 18 *x*, *y* planes per tower
  - 19 "tray" structures
    - 12 with 2.5% Pb on bottom
    - 4 with 25% Pb on bottom
    - 2 with no converter
- Electronics on the sides of trays
  - Minimize gap between towers
- Carbon-fiber walls to provide stiffness

# GLAST performance (compared to EGRET)

| Quantity                                              | GLAST                                      | EGRET                |  |
|-------------------------------------------------------|--------------------------------------------|----------------------|--|
| Energy range                                          | 20 MeV- > 300 GeV                          | 20 MeV- 30 GeV       |  |
| Energy resolution                                     | 10 % (E>100 MeV)                           | 10%                  |  |
| Peak Effective Area                                   | > 8000 cm² (E>1 GeV)                       | 1500 cm <sup>2</sup> |  |
| Single photon angular<br>resolution<br>(68%, on-axis) | <3.5 deg (100 MeV)<br><0.15 deg (E>10 GeV) | 5.8 deg (100 MeV)    |  |
| *Field of view (FOV)                                  | > 2 sr                                     | 0.5 sr               |  |
| Time resolution                                       | 10 microseconds                            | 0.1 milliseconds     |  |
| Dead time                                             | < 20 microsec/event                        | 100 ms/event         |  |





# **GLAST performance two examples of application**

• Cosmic ray production

• Facilitate searches for pulsations from millisecond pulsars







- GLAST will be sent in space in 2007
- A collaboration USA-Japan-France-Italy-Sweden
- Large part of the software is written in Udine... So come and help !



# But despite the progress in satellites...

- The problem of the flux (~1 photon/day/km2 @ ~30
   PeV) cannot be overcome
  - Photon concentrators work only at low energy
  - The key for VHE gamma astrophysics and above is in ground-based detectors
  - Also for dark matter detection...



### **Ground-based detectors**

- An Extensive Air Shower can be detected
  - From the shower particles directly (EAS Particle Detector Arrays)
  - By the Cherenkov light emitted by the charged particles in the shower (Cherenkov detectors)



# **Earth-based detectors Properties of Extensive Air Showers**

• We **believe** we know well the γ physics up to EHE...

Predominant interactions e.m.

- e+e- pair production dominates
- electrons loose energy via brem
- Rossi approximation B is valid
  - Maximum at  $z/X_0 \approx \ln(E/\epsilon_0)$ ;  $\epsilon_0$  is the critical energy ~80 MeV in air;  $X_0 \sim 300$  m at stp
  - Cascades ~ a few km thick
  - Lateral width dominated by Compton scattering ~ Moliere radius (~80m for air at STP)
- Note:  $\lambda_{had} \sim 400 \text{ m}$  for air

hadronic showers have 20x more muons and are less regular than em



# EAS

MILAGRO (New Mexico@2600m)
water Cherenkov,
60x80m^2 + outriggers,
γ/h: Muon-identification
in second layer)

Proposed: HAWC 10x bigger @ 4500m a.s.l.



80m

TIBET-AS (@4300M A.S.L.) SCINTILLATOR-ARRAY, 350x350M<sup>2</sup> SEE: CRAB, MKN421 SOON: ARGO-YBJ 6500m<sup>2</sup> RPC

# **Cherenkov (Č) detectors Cherenkov light from γ showers**

- Č light is produced by particles faster than light in air
- Limiting angle  $\cos \theta_c \sim 1/n$ 
  - $\Box$   $\theta_{c}$  ~ 1° at sea level, 1.3° at 8 km asl
  - Threshold @ sea level : 21 MeV for e, 44 GeV for  $\mu$
  - Maximum of a 1 TeV  $\gamma$  shower ~ 8 Km asl
  - 200 photons/ $m^2$  in the visible
  - Duration  $\sim 2 \text{ ns}$
  - Angular spread  $\sim 0.5^{\circ}$



# **Cherenkov detectors Principles of operation**

- Cherenkov light is detected by means of mirrors which concentrate the photons into fast optical detectors
- In the beginning, heliostats operated during night
  - Problem: night sky background
     On a moonless night
     ~ 0.1 photons/(m<sup>2</sup> ns deg)

Signal  $\propto A$ fluctuations ~  $(A\tau\Omega)^{1/2}$ => S/B<sup>1/2</sup>  $\propto (A/\tau\Omega)^{1/2}$ 





### **Gamma / hadron separation**



# **Ground-based detectors Improvements in atmospheric Č**

- Improving flux sensitivity
  - Detect weaker sources, study larger sky regions  $S/B^{1/2} \propto (A/\tau\Omega)^{1/2}$ 
    - Smaller integration time
    - Improve photon collection, improve quantum efficiency of PMs
    - Use several telescopes
- Lowering the energy threshold
  - Close the gap ~ 100 GeV between satellite-based & ground-based instruments



# The "Big Four"



### **DETECTOR PARAMETERS**

| In 2004:                    | #               | ~mirror<br>area m <sup>2</sup> | Camera<br>pixels | FOV<br>deg | Altit. m<br>asl | arrangement |
|-----------------------------|-----------------|--------------------------------|------------------|------------|-----------------|-------------|
| CANGAROO                    | 4x              | 57                             | 427              | 4          | 160             | □ ~100m     |
| H.E.S.S.                    | 4x              | 107                            | 960              | 5          | 1800            | □ ~120m     |
| MAGIC<br>(2006)             | 1x<br>2x        | 240                            | 577              | 3.5        | 2200            | ~80m        |
| VERITAS<br>(2006)<br>(2007) | 1 x<br>4x<br>7x | 110                            | 499              | 3.5        | 1800            | ~80m        |

# The MAGIC site

#### La Palma, IAC 28° North, 18° West





**Telescopio Nazionale Galileo** 

# Grantecan MAGIC and its Control House



MAGIC

# MAGIC

- Mirror: 17 m diameter
- 240 m<sup>2</sup> Al panels + heating
- 85%-90% reflectivity
- Frame deformation
   Active Mirror Cont

Camera: 3.5° FOV 577 pixels Optical fibre readout 2 level trigger & 300 Mhz FADC system

Light carbon fiber tubes
Telescope: 65 tons
Positioning:22s

After upgrade of the optics in July 2004 the telescope is in its final shape







#### the Active Mirror Control laser beams



# IACT Scientific Highlights (Aug 05)

#### **Galactic observations:**

- I. Discovery of many new Galactic sources by HESS:
  - <u>HESS GP Survey</u> & targeted observations.

#### **II.** Detailed studies of Galactic sources by **HESS**:

- Precision measurements (spectra, morphology, etc.).
- Theoretical models and understanding.
- **III.** Discovery of new classes of VHE gamma-ray emitters by **HESS**:
  - First variable galactic source
- **IV.** Study of the Galactic Center by CANGAROO, HESS and MAGIC:
  - Evidence for a TeV signal; search for DM annihilation

# Scientific Highlights (Aug 05)

#### **Extragalactic observations:**

#### V. Discovery of 4 new AGN by HESS and MAGIC:

- Measurements of AGN properties and multi- $\lambda$  studies.
- Constraints on cosmological EBL density from absorption spectrum.

#### **VI.** Observation of AGN with orphan flares by **MAGIC**:

• Connexion to neutrino and UHECR astronomy?

#### **VII.** High time-resolution study of AGN flares by MAGIC:

• New constraints on emission mechanisms and light speed dispersion relations.

#### VIII. Prompt GRB follow-up by MAGIC:

• GRB follow-up in coincidence with observation in the X-ray domain.

### **IACT vs Satellite**

- Satellite :
  - primary detection
  - small effective area  $\sim 1m^2$ 
    - lower sensitivity
  - large angular opening
    - search
  - large duty-cycle
  - large cost
  - lower energy
  - low bkg



- IACT/ground based
  - secondary detection
  - huge effective area  $\sim 10^4 \, m^2$ 
    - Higher sensitivity
  - small angular opening
    - Serendipity search
  - small duty-cycle
  - low cost
  - high energy
  - high bkg



# An armada of detectors at different energy ranges



### ...some just starting now









# Sensitivity



All sensitivities are at 5σ. Cerenkov telescopes sensitivities (Veritas, MAGIC, Whipple, Hess, Celeste, Stacee, Hegra) are for 50 hours of observations. Large field of view detectors sensitivities (AGILE, GLAST, Milagro,ARGO are for 1 year of observation.

MAGIC sensitivity based on the availability of high efficiency PMT's



In the 100 TeV -100 PeV region...



# **Neutrino Telescope Projects**



# **AMANDA-ICECUBE**

#### **South Pole: glacial ice**



# **Future in v telescopes: ANTARES**



- 1996 Started
- 1996 2000 Site exploration and demonstrator line
- 2001 2004 Construction of 10 line detector, area ~0.1km<sup>2</sup> on Toulon site
- future 1 km<sup>3</sup> in Mediterranean



### To know more...

- Not to ingenerate confusion, just a book
  - It's swedish, and it connects well to Martin & Shaw:
     Bengström & Goobar, Cosmology and Particle Astrophysics, Wiley

But careful: the field is in fast evolution...
 So if you are interested, talk to a teach' (to me if you pass by) and have a chat about a school