IV. Space-time symmetries

- Conservation laws have their origin in symmetries and invariance properties of the underlying interactions
 - Exact symmetry implies a conservation law ⇒ an observable which absolute value can not be defined ("non-observable")

Symmetries, conservation laws and "non-observables":

Symmetry transformation	Conservation law or selection rule	Non-observable
Space translation: $x \rightarrow x + \delta x$	momentum	absolute spatial position
Rotation: $\overline{x} \rightarrow \overline{x}$	angular momentum	absolute spatial direction
Time translation: $t \rightarrow t+\delta t$	energy	absolute time
Reflection: $\overline{x} \rightarrow -\overline{x}$	parity	"handedness" (absolute generalized right/left)
Charge conjugation: $\mathbf{q} \rightarrow \mathbf{-q}$ particle-antiparticle symmetry		absolute sign of electric charge
$\psi \rightarrow e^{iq}\theta \psi$	charge q	relative phase between states of different q
$\psi \rightarrow e^{iL}\theta \psi$	lepton number L	relative phase between states of different L
$\psi \rightarrow e^{iB}\theta \psi$	baryon number B	relative phase between states of different B

Translational invariance

When a closed system of particles is moved from from one position in space to another, its physical properties do not change

Considering an infinitesimal translation $\vec{x}_i \rightarrow \vec{x}'_i = \vec{x}_i + \delta \vec{x}$, the Hamiltonian of the system transforms as:

$$H(\overset{\Rightarrow}{x}_1,\overset{\Rightarrow}{x}_2,...,\overset{\Rightarrow}{x}_n) \rightarrow H(\overset{\Rightarrow}{x}_1+\delta\overset{\Rightarrow}{x},\overset{\Rightarrow}{x}_2+\delta\overset{\Rightarrow}{x},...,\overset{\Rightarrow}{x}_n+\delta\overset{\Rightarrow}{x})$$

In the simplest case of a free particle,

$$H = -\frac{1}{2m}\nabla^2 = -\frac{1}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)$$
(39)

From Equation (39) it is clear that

$$H(\vec{x}'_1, \vec{x}'_2, ..., \vec{x}'_n) = H(\vec{x}_1, \vec{x}_2, ..., \vec{x}_n)$$
 (40)

which is true for any general closed system.

The Hamiltonian is *invariant* under the *translation operator* \hat{D} , which is defined as an action onto an arbitrary wavefunction $\psi(\hat{x})$ such that

$$\hat{D}\psi(\dot{x}) \equiv \psi(\dot{x} + \delta\dot{x}) \tag{41}$$

For a single-particle state $\psi'(x) = H(x)\psi(x)$, from (41) one obtains:

$$\hat{D}\psi'(\overset{>}{x}) = \psi'(\overset{>}{x} + \delta\overset{>}{x}) = H(\overset{>}{x} + \delta\overset{>}{x})\psi(\overset{>}{x} + \delta\overset{>}{x})$$

Since the Hamiltonian is invariant under translation,

$$\hat{D}\psi'(\vec{x}) = H(\vec{x})\psi(\vec{x} + \delta\vec{x})$$
, and using the definitions once again,

$$\hat{D}H(\vec{x})\psi(\vec{x}) = H(\vec{x})\hat{D}\psi(\vec{x})$$
(42)

* It is said that \hat{D} commutes with Hamiltonian (a standard notation for this is $[\hat{D}, H] \equiv \hat{D}H - H\hat{D} = 0$)

Since $\delta \hat{x}$ is an infinitely small quantity, translation (41) can be expanded:

$$\psi(\dot{x} + \delta \dot{x}) = \psi(\dot{x}) + \delta \dot{x} \cdot \nabla \psi(\dot{x}) \tag{43}$$

Form (43) includes explicitly the momentum operator $\hat{p} = -i\nabla$, hence the translation operator \hat{D} can be rewritten as

$$\hat{D} = 1 + i\delta \hat{x} \cdot \hat{p} \tag{44}$$

Substituting (44) to (42), one obtains

$$[\hat{p}, H] = 0 \tag{45}$$

which is simply the *momentum conservation law* for a single-particle state whose Hamiltonian in invariant under translation.

Generalization of (44) and (45) for the case of multiparticle state leads to the general momentum conservation law for the total momentum

$$\vec{p} = \sum_{i=1}^{n} \vec{p}_{i}$$

Rotational invariance

When a closed system of particles is rotated about its centre-of-mass, its physical properties remain unchanged

Under a rotation about e.g. z-axis through an angle θ , coordinates x_i, y_i, z_i transform to new coordinates x'_i, y'_i, z'_i as follows:

$$x'_{i} = x_{i}\cos\theta - y_{i}\sin\theta$$

$$y'_{i} = x_{i}\sin\theta + y_{i}\cos\theta$$

$$z'_{i} = z$$
(46)

Correspondingly, the new Hamiltonian of the rotated system will be the same as the initial one, $H(\vec{x}_1, \vec{x}_2, ..., \vec{x}_n) = H(\vec{x}_1, \vec{x}_2, ..., \vec{x}_n)$

Considering rotation through an infinitesimal angle $\delta\theta$, equations (46) transform to

$$x' = x - y\delta\theta$$
, $y' = y + x\delta\theta$, $z' = z$

A rotational operator \hat{R}_Z is introduced by analogy with the translation operator \hat{D} :

$$\hat{R}_{z}\psi(\dot{x}) \equiv \psi(\dot{x}') = \psi(x - y\delta\theta, y + x\delta\theta, z)$$
(47)

Expansion to first order in $\delta\theta$ gives

$$\psi(\vec{x}') = \psi(\vec{x}) - \delta\theta \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right) \psi(\vec{x}) = (1 + i\delta\theta \hat{L}_z) \psi(\vec{x})$$

where \hat{L}_z is z-component of the orbital angular momentum operator \hat{L} :

$$\hat{L}_z = -i\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$$
 (in classical mechanics $\vec{L} = \vec{r} \times \vec{p} \Rightarrow L_z = (xp_y - yp_x)$)

© For a general case of rotation about an arbitrary direction specified by a unit vector \vec{n} , \vec{L}_Z has to be replaced by the corresponding projection of \vec{L} : $\vec{L} \cdot \vec{n}$, giving

$$\hat{R}_n = 1 + i\delta\theta(\hat{L} \cdot \hat{n}) \tag{48}$$

Considering \hat{R}_n acting on a single-particle state $\psi'(\vec{x}) = H(\vec{x})\psi(\vec{x})$ and repeating same steps as for the translation case, one gets:

$$[R_n, H] = 0 (49)$$

$$[\hat{L}, H] = 0 \tag{50}$$

This applies to a spin-0 particle moving in a central potential, i.e., in a field that does not depend on a direction, but only on the absolute distance.

If a particle posseses a non-zero spin, the total angular momentum is the sum of the orbital and spin angular momenta:

$$\hat{J} = \hat{L} + \hat{S} \tag{51}$$

and the wavefunction is a product of the independent space wavefunction $\psi(x)$ and spin wavefunction χ :

$$\Psi = \psi(x)\chi$$

For the case of spin-1/2 particles, the spin operator is represented in terms of Pauli matrices σ :

$$\hat{S} = \frac{1}{2}\sigma \tag{52}$$

where σ has components (recall Chapter I.):

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (53)

Let us denote now spin wavefunction for spin "up" state as $\chi = \alpha$ ($S_z = 1/2$) and for spin "down" state as $\chi = \beta$ ($S_z = -1/2$), so that

$$\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{54}$$

Both α and β satisfy the eigenvalue equations for operator (52):

$$\hat{S}_z \alpha = \frac{1}{2} \alpha$$
, $\hat{S}_z \beta = -\frac{1}{2} \beta$

Analogously to (48), rotation operator for a spin-1/2 particle generalizes to

$$\hat{R}_n = 1 + i\delta\theta(\hat{J} \cdot \hat{n}) \tag{55}$$

When the rotation operator \hat{R}_n acts onto a wave function $\Psi = \psi(\hat{x})\chi$, components \hat{L} and \hat{S} of \hat{J} act independently upon the corresponding wave functions:

$$\hat{J}\Psi = (\hat{L} + \hat{S})\psi(\hat{x})\chi = [\hat{L}\psi(\hat{x})]\chi + \psi(\hat{x})[\hat{S}\chi]$$

That means that although the total angular momentum has to be conserved,

$$[\hat{J}, H] = 0$$

the rotational invariance does not in general lead to the conservation of L and S separately:

$$[\hat{L}, H] = -[\hat{S}, H] \neq 0$$

However, presuming that the forces can change only orientation of the spin, but not its absolute value, one can conclude that

$$[H, \hat{L}^2] = [H, \hat{S}^2] = 0$$

Good quantum numbers are those which are associated with conserved observables (operators commute with the Hamiltonian)

Spin is one of the quantum numbers which characterize any particle – elementary or composite.

- © Spin \vec{S}_P of a <u>composite</u> particle is the total angular momentum \vec{J} of its constituents in their centre-of-mass frame
- Quarks are spin-1/2 particles \Rightarrow the spin quantum number $S_P = J$ of hadrons can be either integer or half-integer
- Spin projections on a chosen z-axis J_z can take any of 2J+1 values, from J_z to J_z with the "step" of 1, depending on the particle's spin orientation
 - © Usually, it is assumed that L and S are "good" quantum numbers together with $J=S_P$, while J_z depends on the spin orientation.

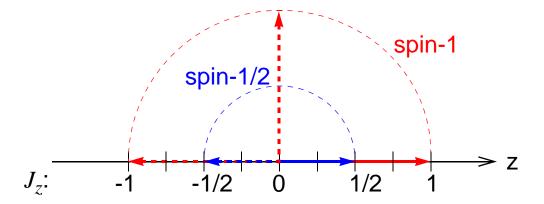


Figure 40: A naive illustration of possible J_z values for spin-1/2 and spin-1 particles

Using "good" quantum numbers, one can refer to a particle via spectroscopic notation, like

$$^{2S+1}L_{J} \tag{56}$$

- © Following chemistry traditions, instead of numerical values of L=0,1,2,3..., letters S,P,D,F... are used correspondingly
- ⊚ In this notation, the lowest-lying (L=0) bound state of two particles of spin-1/2 (a meson) will be ${}^{1}S_{0}$ or ${}^{3}S_{1}$

$$L=0$$
 $1S_0$
 1

Figure 41: Quark-antiquark states for L=0

- **⊚** For mesons with L ≥ 1, possible states are: ${}^{1}L_{L}$, ${}^{3}L_{L+1}$, ${}^{3}L_{L}$, ${}^{3}L_{L-1}$
- ❖ Baryons are bound states of 3 quarks ⇒ there are two orbital angular momenta connected to the relative motion of quarks.

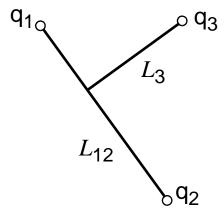


Figure 42: Internal orbital angular momenta of a three-quark state

- \odot total orbital angular momentum is $L=L_{12}+L_3$.
- ⊚ spin of a baryon $S=S_1+S_2+S_3 \Rightarrow S=1/2$ or S=3/2

Possible baryon states:

$${}^{2}S_{1/2}$$
, ${}^{4}S_{3/2}$ (L = 0)

$${}^{2}P_{1/2}$$
, ${}^{2}P_{3/2}$, ${}^{4}P_{1/2}$, ${}^{4}P_{3/2}$, ${}^{4}P_{5/2}$ (L = 1)

$$^{2}L_{L+1/2}$$
, $^{2}L_{L-1/2}$, $^{4}L_{L-3/2}$, $^{4}L_{L-1/2}$, $^{4}L_{L+1/2}$, $^{4}L_{L+3/2}$ ($L \ge 2$)

Parity

Parity transformation is the transformation by reflection:

$$\dot{\vec{x}}_i \to \dot{\vec{x}}_i = -\dot{\vec{x}}_i \tag{57}$$

A system is said to be invariant under parity transformation if $H(-\overset{>}{x}_1, -\overset{>}{x}_2, ..., -\overset{>}{x}_n) = H(\overset{>}{x}_1, \overset{>}{x}_2, ..., \overset{>}{x}_n)$

- Parity is not an exact symmetry: it is violated in weak interactions!
 - Absolute handedness can actually be defined

A parity operator \hat{P} is defined as

$$\hat{P}\psi(\dot{x},t) \equiv P_{a}\psi(-\dot{x},t) \tag{58}$$

Two consecutive reflections must result in the identical to initial system:

$$P^2\psi(x,t) = \psi(x,t) \tag{59}$$

© From equations (58) and (59), $P_a = +1$, -1

Consider a particle wavefunction which is a solution of the Dirac equation (16): $\psi_{\vec{p}}(\vec{x},t) = u(\vec{p})e^{i(\vec{p}\vec{x}-Et)}$, where $u(\vec{p})$ is a four-component spinor independent of \vec{x} . Parity operation on such a wavefunction is then:

$$\hat{P}\psi_{\stackrel{>}{p}}(\stackrel{>}{x},t) = P_a u(-\stackrel{>}{p})e^{i((-\stackrel{>}{p})(-\stackrel{>}{x})-Et)}$$
(60)

• Particle at rest (p = 0) is an eigenstate of the parity operator:

$$\hat{P}\psi_0(\vec{x},t) = P_a u(0)e^{-iEt} = P_a \psi_0(\vec{x},t)$$
(61)

- © Eigenvalue P_a is called the *intrinsic parity* of a particle a: intrinsic parity is parity of a particle at rest
- \diamond Different particles have different, independent, values of parity P_a . For a system of n particles,

$$\hat{P}\psi(\dot{x}_1,\dot{x}_2,\ldots,\dot{x}_n,t) \equiv P_1 P_2 \ldots P_n \psi(-\dot{x}_1,-\dot{x}_2,\ldots,-\dot{x}_n,t)$$

Polar coordinates offer a convenient frame: parity transformation is

$$r \rightarrow r' = r$$
, $\theta \rightarrow \theta' = \pi - \theta$, $\phi \rightarrow \phi' = \pi + \phi$

and a wavefunction can be written as

$$\psi_{nlm}(\dot{x}) = R_{nl}(r)Y_l^m(\theta, \varphi) \tag{62}$$

In Equation (62), R_{nl} is a function of the radius only, and Y_l^m are *spherical harmonics*, which describe angular dependence.

Under the parity transformation, R_{nl} does not change, while spherical harmonics change as

$$Y_l^m(\theta, \varphi) \to Y_l^m(\pi - \theta, \pi + \varphi) = (-1)^l Y_l^m(\theta, \varphi)$$

$$\downarrow \downarrow$$

$$\hat{P}\psi_{nlm}(\dot{x}) = P_a \psi_{nlm}(-\dot{x}) = P_a(-1)^l \psi_{nlm}(\dot{x})$$

© A particle with a definite orbital angular momentum is also an eigenstate of parity with an eigenvalue $P_a(-1)^l$.

Considering only electromagnetic and strong interactions, and using the usual argumentation, one can prove that parity is conserved:

$$[\hat{P}, H] = 0$$

- Recall: the Dirac equation (16) suggests a four-component wavefunction to describe both electrons and positrons: 2 components for electrons, 2 components for positrons.
- ❖ Indeed, intrinsic parities of e⁻ and e⁺ are related, namely:

$$P_{e^{+}}P_{e^{-}} = -1$$

This is true for all the fermions (spin-1/2 particles), i.e.,

$$P_f P_{\bar{f}} = -1 \tag{63}$$

Experimentally this can be confirmed by studying the reaction $e^+e^- \to \gamma\gamma$ where initial state has zero orbital momentum and parity of P_{ρ^-} P_{ρ^+} .

o If the final state has relative orbital angular momentum l_{γ} , its parity is $P_{\gamma}^{2}(-1)^{l_{\gamma}}$.

© Since $P_{\gamma}^2=1$, from the parity conservation law stems that $P_{e^-}P_{e^+}=(-1)^{l_{\gamma}}$

Experimental measurements of l_{γ} confirm (63)

While (63) can be proved in experiments, it is impossible to determine P_{e^-} or P_{e^+} , since these particles are created or destroyed only in pairs.

Conventionally defined parities of leptons are:

$$P_{e^{-}} = P_{\mu^{-}} = P_{\tau^{-}} \equiv 1$$
 (64)

And consequently, parities of antileptons have opposite sign.

Since quarks and antiquarks are also produced only in pairs, their parities are defined also by convention:

$$P_u = P_d = P_s = P_c = P_b = P_t = 1$$
 (65)

with parities of antiquarks being -1.

For a meson M=(ab), parity is then calculated as

$$P_M = P_a P_{\bar{b}} (-1)^L = (-1)^{L+1} \tag{66}$$

 \odot For the low-lying mesons (L=0) this implies parity of -1, which is confirmed by observations

For a baryon B=(abc), parity is given as

$$P_B = P_a P_b P_c (-1)^{L_{12}} (-1)^{L_3} = (-1)^{L_{12} + L_3}$$
(67)

and for antibaryon $P_{\overline{R}} = -P_B$, similarly to the case of leptons.

© For the low-lying baryons with $L_{12}=L_3=0$, (67) predicts positive parities, which is also confirmed by experiment.

Parity of the photon can be deduced from the classical field theory, considering Poisson's equation:

$$\nabla \cdot \overrightarrow{E}(\overrightarrow{x}, t) = \frac{1}{\varepsilon_0} \rho(\overrightarrow{x}, t)$$

Under a parity transformation, charge density changes as $\rho(\vec{x}, t) \to \rho(-\vec{x}, t)$ and ∇ changes its sign, so that to keep the equation invariant, the electric field must transform as

$$\overrightarrow{E}(\overrightarrow{x},t) \to -\overrightarrow{E}(-\overrightarrow{x},t) \tag{68}$$

The electromagnetic field is described by the vector and scalar potentials:

$$\dot{\vec{E}} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t} \tag{69}$$

For photons, only the vector part corresponds to the wavefunction:

$$\vec{A}(\vec{x}, t) = N \hat{\epsilon}(\vec{k}) e^{i(\vec{k}\vec{x} - Et)}$$

Under parity transformation: $\vec{A}(\vec{x}, t) \rightarrow P_{\gamma} \vec{A}(-\vec{x}, t)$, and from (68) follows

$$\overrightarrow{E}(\overrightarrow{x},t) \to P_{\gamma} \overrightarrow{E}(-\overrightarrow{x},t).$$
(70)

© Comparing (70) and (68), one concludes that parity of photon is $P_{\gamma} = -1$

Charge conjugation

- Charge conjugation replaces particles by their antiparticles, reversing charges and magnetic moments
- Charge conjugation is violated in weak interactions
 - Absolute sign of the electric charge can actually be defined

For strong and electromagnetic interactions, charge conjugation is a symmetry:

$$[\hat{C}, H] = 0$$

(a) It is convenient now to denote a state in a compact notation, using Dirac's "ket" representation: $|\pi^+, \stackrel{\Rightarrow}{p}\rangle$ denotes a pion having momentum $\stackrel{\Rightarrow}{p}$, or, in general case,

$$|\pi^{+}\Psi_{I};\pi^{-}\Psi_{2}\rangle \equiv |\pi^{+}\Psi_{I}\rangle|\pi^{-}\Psi_{2}\rangle \tag{71}$$

 \odot Next, we denote particles which have distinct antiparticles with "a", and otherwise – with " α "

In such notations, we describe the action of the charge conjugation operator upon particles of kind " α " as:

$$\hat{C}|\alpha, \Psi\rangle = C_{\alpha}|\alpha, \Psi\rangle \tag{72}$$

meaning that the final state acquires a phase factor C_{α} , and for "a" as:

$$\hat{C}|a,\Psi\rangle = |\bar{a},\Psi\rangle$$
 (73)

meaning that from a particle in the initial state we came to the antiparticle in the final state.

Since the consequtive transformation turns antiparticles back to particles, $\hat{C}^2 = 1$ and hence

$$C_{\alpha} = \pm 1 \tag{74}$$

For multiparticle states the transformation is:

$$\hat{C}|\alpha_1, \alpha_2, ..., a_1, a_2, ...; \Psi\rangle = C_{\alpha_1} C_{\alpha_2} ... |\alpha_1, \alpha_2, ..., \bar{a}_1, \bar{a}_2, ...; \Psi\rangle$$
 (75)

- From (72) follows that particles $\alpha = \gamma, \pi^0,...$ are eigenstates of \hat{C} with eigenvalues $C_\alpha = \pm 1$.
- Other eigenstates can be constructed from particle-antiparticle pairs:

$$\hat{C}|a, \Psi_1; \bar{a}, \Psi_2\rangle = |\bar{a}, \Psi_1; a\Psi_2\rangle = \pm |a, \Psi_1; \bar{a}, \Psi_2\rangle$$

For a state of definite orbital angular momentum, interchanging between particle and antiparticle reverses their relative position vector, for example:

$$\hat{C}|\pi^{+}\pi^{-};L\rangle = (-1)^{L}|\pi^{+}\pi^{-};L\rangle$$
 (76)

For fermion-antifermion pairs theory predicts

$$\hat{C}|ff;J,L,S\rangle = (-1)^{L+S}|ff;J,L,S\rangle \tag{77}$$

This implies that e.g. a neutral pion π^0 , being a 1S_0 state of uu and dd, must have C-parity of 1.

Tests of C-invariance

• Prediction of $C_{\pi^0} = 1$ can be confirmed experimentally by observing the decay $\pi^0 \rightarrow \gamma \gamma$.

The final state has C=1, and from the relations

$$\hat{C}|\pi^0\rangle = C_{\pi^0}|\pi^0\rangle$$

$$\hat{C}|\gamma\gamma\rangle = C_{\gamma}C_{\gamma}|\gamma\gamma\rangle = |\gamma\gamma\rangle$$

follows that $C_{\pi^0} = 1$.

 $\cdot \cdot \cdot \cdot \cdot \cdot$ can be inferred from the classical field theory:

$$\overrightarrow{A}(\overrightarrow{x},t) \to C_{\gamma} \overrightarrow{A}(\overrightarrow{x},t)$$

under the charge conjugation, and since all electric charges swap, electric field and scalar potential also change sign:

$$\overrightarrow{E}(\overrightarrow{x},t) \rightarrow -\overrightarrow{E}(\overrightarrow{x},t)$$
, $\phi(\overrightarrow{x},t) \rightarrow -\phi(\overrightarrow{x},t)$

Upon substitution into (69) this gives $C_{\gamma} = -1$.

* To check predictions of the C-invariance and of the value of C_{γ} , one can try to look for the decay

$$\pi^0 \rightarrow \gamma + \gamma + \gamma$$

1 If predictions for C_{γ} and $C_{\pi}o$ are true, this mode should be **forbidden**:

$$\hat{C}|\gamma\gamma\gamma\rangle = (C_{\gamma})^{3}|\gamma\gamma\gamma\rangle = -|\gamma\gamma\gamma\rangle$$

contradicts all previous observations. Indeed, experimentally, this 3γ mode has never been observed.

Symmetry requirements and corresponding conservation laws explain why certain particle decays are never observed – forbidden
$$\eta \to \gamma + \gamma$$

$$\eta \to \pi^0 + \pi^0 + \pi^0$$

$$\eta \to \pi^+ + \pi^- + \pi^0$$

© They are electromagnetic decays, and first two clearly indicate that C_{η} =1. Identical charged pions momenta distribution in the last confirms C-invariance.