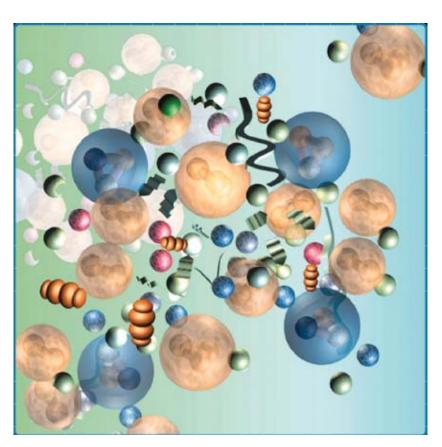
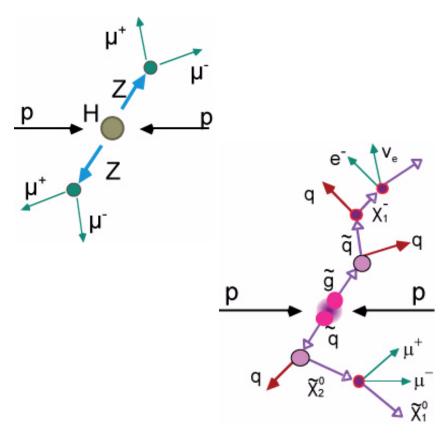
Modern Experimental Particle Physics





I. Basic concepts

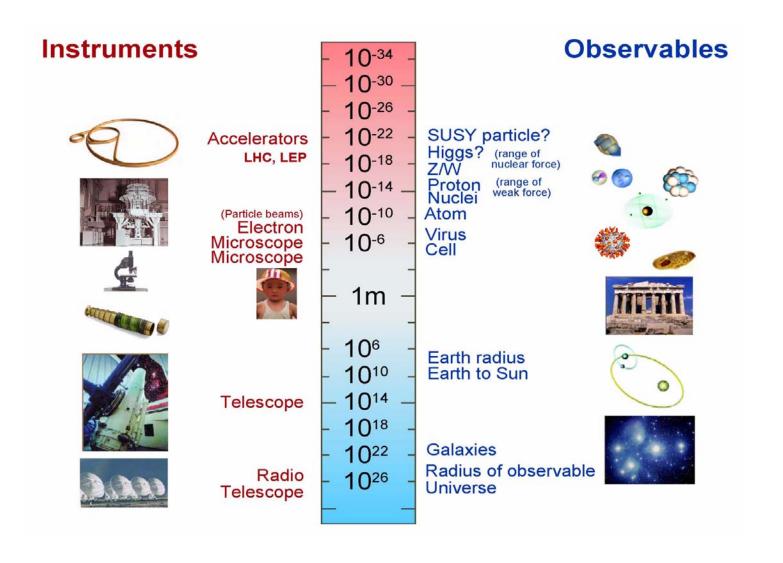


Figure 1: Object sizes and observation instruments

Main concepts

- Particle physics studies elementary "building blocks" of matter and interactions between them.
- Matter consists of particles.
 - Matter is built of particles called "fermions": those that have half-integer spin, e.g. 1/2; obey Fermi-Dirac statistics.
- Particles interact via forces.
 - Interaction is an exchange of a force-carrying particle.
- Force-carrying particles are called gauge bosons (spin-1).

Forces of nature

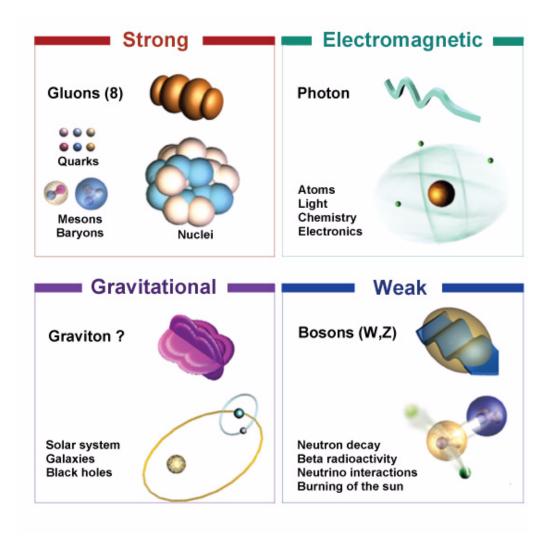


Figure 2: Forces and their carriers

Summary table of forces:

Force	Acts on/ couples to:	Carrier	Range	Strength	Stable systems	Induced reaction
Gravity	all particles Mass/E-p tensor	graviton G (has not yet been observed)	$\log F \propto 1/r^2$	~ 10 ⁻³⁹	Solar system	Object falling
Weak force	fermions hypercharge	bosons W ⁺ ,W ⁻ and Z	$< 10^{-17} \mathrm{m}$	10 ⁻⁵	None	eta-decay
Electro- magnetism	charged particles electric charge	photon γ	$\log F \propto 1/r^2$	1/137	Atoms, molecules	Chemical reactions
Strong force	quarks and gluons colour charge	gluons g (8 different)	$10^{-15}{\rm m}$	1	Hadrons, nuclei	Nuclear reactions

The Standard Model

- Electromagnetic and weak forces can be described by a single theory ⇒ the "Electroweak Theory" was developed in 1960s (Glashow, Weinberg, Salam).
- Theory of strong interactions appeared in 1970s: "Quantum Chromodynamics" (QCD).
- * The "Standard Model" (SM) combines all the current knowledge.
 - © Gravitation is VERY weak at particle scale, and it is not included in the SM. Moreover, quantum theory for gravitation does not exist yet.

Main postulates of SM:

- 1) Basic constituents of matter are *quarks* and *leptons* (spin 1/2)
- 2) They interact by exchanging gauge bosons (spin 1)
- 3) Quarks and leptons are subdivided into 3 *generations*

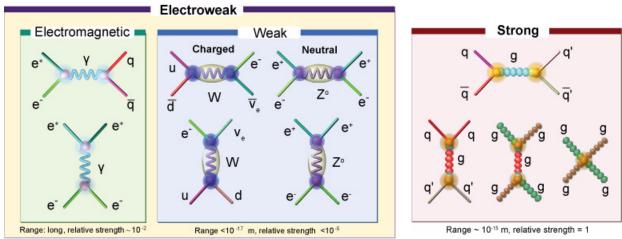


Figure 3: Standard Model: quarks, leptons and bosons

SM does not explain neither appearance of the mass nor the reason for existence of the 3 generations.

History of the Universe as we know it

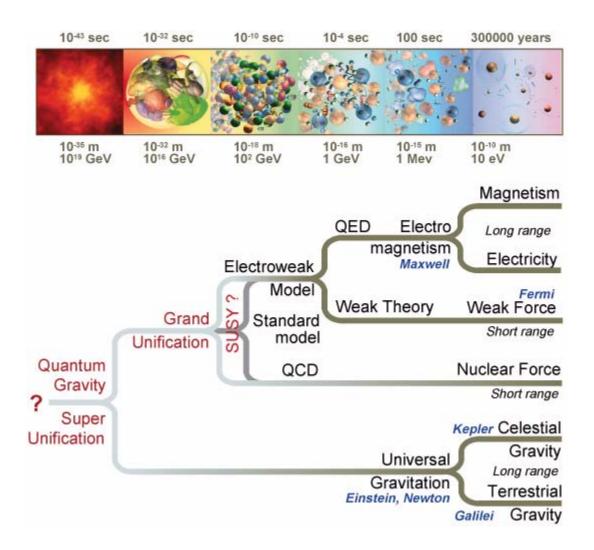


Figure 4: Summary of the current knowledge about our Universe

Units and dimensions

Particle energy is measured in electron-volts:

$$1 \text{ eV} \approx 1.602 \times 10^{-19} \text{ J}$$
 (1)

- 1 eV is energy of an electron upon passing a voltage of 1 Volt.
- \odot 1 keV = 10^3 eV; 1 MeV = 10^6 eV; 1 GeV = 10^9 eV
- The reduced *Planck constant* and the *speed of light*.

$$hbar{h} = h/2\pi = 6.582 \times 10^{-22} \text{ MeV s}$$
 (2)

$$c = 2.9979 \times 10^8 \text{ m/s}$$
 (3)

and the "conversion constant" is:

$$\hbar c = 197.327 \times 10^{-15} \text{ MeV m}$$
 (4)

For simplicity, natural units are used:

$$hbar{\pi} = 1 \quad \text{and} \quad c = 1$$

thus the unit of mass is eV/c^2 , and the unit of momentum is eV/c

Four-vector formalism

Relativistic kinematics is formulated with four-vectors:

- © space-time four-vector: x=(t,x)=(t,x,y,z), where t is time and x is a coordinate vector (c=1 notation is used)
- o momentum four-vector: $p=(E,p)=(E,p_x,p_y,p_z)$, where E is particle energy and p is particle momentum vector

Calculus rules with four-vectors:

- 4-vectors are defined as
 - © contravariant.

$$A^{\mu} = (A^{0}, \vec{A}), B^{\mu} = (B^{0}, \vec{B}),$$
 (6)

o and covariant.

$$A_{\mathfrak{u}} = (A^{0}, \stackrel{\longrightarrow}{-A}), B_{\mathfrak{u}} = (B^{0}, \stackrel{\longrightarrow}{-B}). \tag{7}$$

Scalar product of two four-vectors is defined as:

$$A \cdot B = A^{0}B^{0} - (\vec{A} \cdot \vec{B}) = A_{\mu}B^{\mu} = A^{\mu}B_{\mu}.$$
 (8)

Scalar products of momentum and space-time four-vectors are thus:

$$x \cdot p = x^{0} p^{0} - (\overrightarrow{x} \cdot \overrightarrow{p}) = Et - (\overrightarrow{x} \cdot \overrightarrow{p})$$
 (9)

4-vector product of coordinate and momentum represents particle wavefunction

$$p \cdot p = p^{2} = p^{0} p^{0} - (\vec{p} \cdot \vec{p}) = E^{2} - \vec{p}^{2} \equiv m^{2}$$
 (10)

4-momentum squared gives particle's invariant mass

For relativistic particles, we can see that

$$E^2 = p^2 + m^2 \quad (c=1) \tag{11}$$

Antiparticles

Particles are described by wavefunctions:

$$\Psi(\vec{x},t) = Ne^{i(\vec{p}\vec{x} - Et)}$$
 (12)

 \vec{x} is the coordinate vector, \vec{p} - momentum vector, \vec{E} and t are energy and time.

Particles obey the classical Schrödinger equation:

$$i\frac{\partial}{\partial t}\Psi(\vec{x},t) = H\Psi(\vec{x},t) = \frac{\vec{p}^2}{2m}\Psi(\vec{x},t) = -\frac{1}{2m}\nabla^2\Psi(\vec{x},t)$$
(13)

here
$$\dot{\vec{p}} = \frac{h}{2\pi i} \nabla \equiv \frac{\nabla}{i}$$
 (14)

For relativistic particles, $E^2 = p^2 + m^2$ (11), and (13) is replaced by the Klein-Gordon equation (15):

$$-\frac{\partial^{2}}{\partial t^{2}}(\Psi) = H^{2}\Psi(\dot{\vec{x}}, t) = -\nabla^{2}\Psi(\dot{\vec{x}}, t) + m^{2}\Psi(\dot{\vec{x}}, t)$$
(15)

 \diamond There exist *negative* energy solutions with $E_{+}<0$!

$$\Psi^*(\overset{>}{x},t) = N^* \cdot e^{i(-\overset{>}{p}\overset{>}{x}} + E_+ t)$$

There is a problem with the Klein-Gordon equation: it is second order in derivatives. In 1928, Dirac found the first-order form having the same solutions:

$$i\frac{\partial \Psi}{\partial t} = -i\sum_{i} \alpha_{i} \frac{\partial \Psi}{\partial x_{i}} + \beta m \Psi \tag{16}$$

Here α_i and β are 4×4 matrices, and Ψ are four-component wavefunctions: *spinors* (for particles with spin 1/2).

$$\Psi(\vec{x},t) = \begin{bmatrix} \Psi_{1}(\vec{x},t) \\ \Psi_{2}(\vec{x},t) \\ \Psi_{3}(\vec{x},t) \\ \Psi_{4}(\vec{x},t) \end{bmatrix}$$

Oxana Smirnova Lund University 13

Dirac-Pauli representation of matrices α_i and β :

$$\alpha_{i} = \begin{pmatrix} 0 & \sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

Here *I* is a 2×2 unit matrix, 0 is a 2×2 matrix of zeros, and σ_i are 2×2 *Pauli matrices*:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Also possible is *Weyl representation*:

$$\alpha_{i} = \begin{pmatrix} -\sigma_{i} & 0 \\ 0 & \sigma_{i} \end{pmatrix} \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Dirac's picture of vacuum

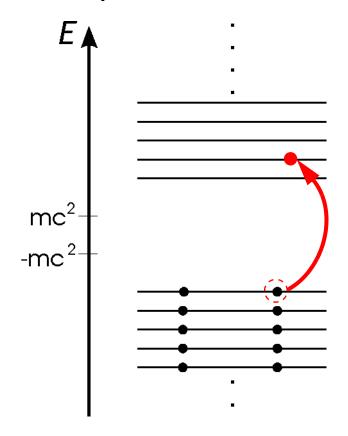


Figure 5: Fermions in Dirac's representation

- The "hole" created by appearance of an electron with "normal" energy is interpreted as the presence of electron's antiparticle with the opposite charge.
- © Every charged particle must have an antiparticle of the same mass and opposite charge, to solve the mystery of "negative" energy.

Discovery of the positron

1933, C.D.Andersson, Univ. of California (Berkeley) observed with the Wilson cloud chamber 15 tracks in cosmic rays:

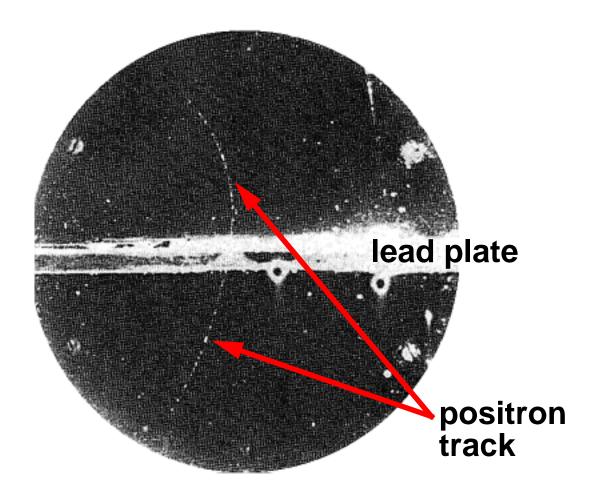


Figure 6: Photo of the track in the Wilson chamber

Feynman diagrams

In 1940s, R.Feynman developed a diagram technique for representing processes in particle physics.

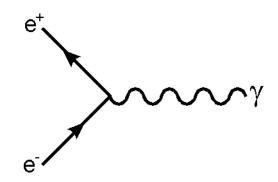
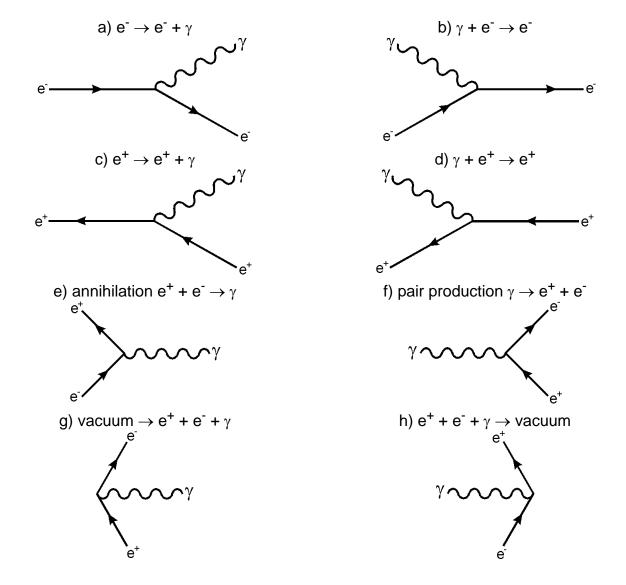


Figure 7: A Feynman diagram example: $e+e--> \gamma$

Main assumptions and requirements:

- Time runs from left to right
- Output
 Output
 Output
 Description
 Output
 Description
 Description
- At every vertex, momentum, angular momentum and charge are conserved (but not necessarily energy)
- Particles are shown by solid lines, gauge bosons by helices or dashed lines



A real process demands energy conservation, hence is a combination of virtual processes.

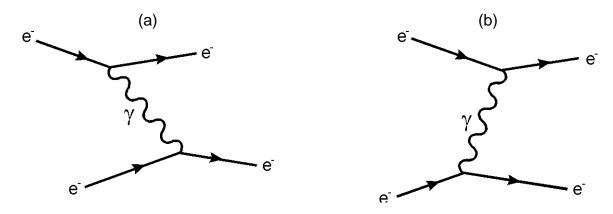


Figure 9: Electron-electron scattering, single photon exchange

Any real process receives contributions from all the possible virtual processes.

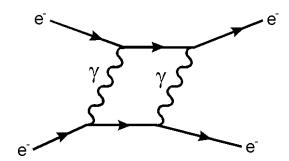


Figure 10: Two-photon exchange contribution

- ❖ Probability P(e¯e¯ → e¯e¯) = |M(1 γ exchange) + M(2 γ exchange) + M(3 γ exchange) +... |² (M stands for contribution, "Matrix element")
 - Number of vertices in a diagram is called its order.
 - © Each vertex has an associated probability proportional to a *coupling constant*, usually denoted as " α ". In discussed processes this constant is

$$\alpha_{em} = \frac{e^2}{4\pi\varepsilon_0} \approx \frac{1}{137} \ll 1 \tag{17}$$

- **1** Matrix element for a two-vertex process is proportional to $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, where each vertex has a factor $\sqrt{\alpha}$. Probability for a process is $P = |M|^2 = \alpha^2$
- © For the real processes, a diagram of order n gives a contribution to probability of order α^n .

Provided sufficiently small α , high order contributions are smaller and smaller and the result is convergent: $P(\text{real}) = |M(\alpha) + M(\alpha^2) + M(\alpha^3)...|^2$

Often lowest order calculation is precise enough.

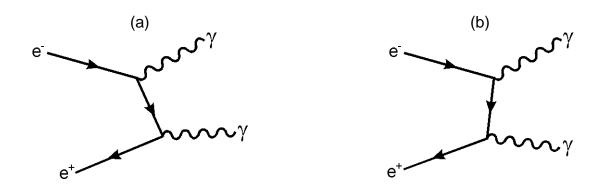


Figure 11: Lowest order contributions to $e^+e^- \rightarrow \gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^2$

Objective in the property of them
Diagrams which differ only by time-ordering are usually implied by drawing only one of them

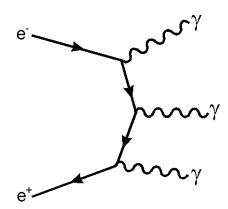


Figure 12: Lowest order of the process $e^+e^- \rightarrow \gamma\gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^3$

This kind of process implies 3!=6 different time orderings

Order of diagrams is sufficient to estimate the ratio of appearance rates of processes:

$$R = \frac{Rate(e^{+}e^{-} \to \gamma\gamma\gamma)}{Rate(e^{+}e^{-} \to \gamma\gamma)} = \frac{O(\alpha^{3})}{O(\alpha^{2})} = O(\alpha)$$

This ratio can be measured experimentally; it appears to be $R = 0.9 \times 10^{-3}$, which is smaller than α_{em} , being only a first order prediction.

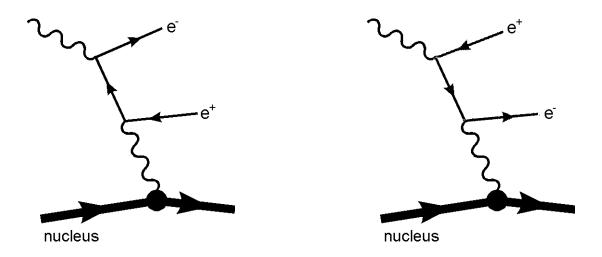


Figure 13: Diagrams that are not related by time ordering

© For nuclei, the coupling is proportional to $Z^2\alpha$, hence the rate of this process is of order $Z^2\alpha^3$

Exchange of a massive boson

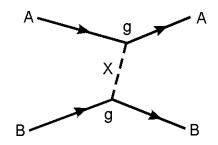


Figure 14: Exchange of a massive particle X

In the rest frame of particle A: $A(E_0, \vec{p}_0) \rightarrow A(E_A, \vec{p}) + X(E_\chi, -\vec{p})$

where
$$E_0 = M_A$$
, $p_0 = (0, 0, 0)$, $E_A = \sqrt{p^2 + M_A^2}$, $E_X = \sqrt{p^2 + M_X^2}$

From this one can estimate the maximum distance over which X can propagate before being absorbed: $\Delta E = E_X + E_A - M_A \ge M_X$, and this energy violation can exist only for a period of time $\Delta t \approx \hbar / \Delta E$ (Heisenberg's uncertainty relation), hence the *range of the interaction* is $r \approx R \equiv (\hbar / M_X)c = \Delta t c$

- For a massless exchanged particle, the interaction has an infinite range (e.g., electromagnetic)
- In case of a very heavy exchanged particle (e.g., a W boson in weak interaction), the interaction can be approximated by a zero-range, or point interaction:

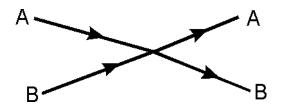


Figure 15: Point interaction as a result of $M_X \to \infty$

E.g., for a W boson: $R_W = \hbar / M_W = \hbar / (80.4 \text{ GeV/c}^2) \approx 2 \times 10^{-18} \text{ m}$

Yukawa potential (1935)

Considering particle X as an electrostatic spherically symmetric potential V(r), the Klein-Gordon equation (15) for it will look like

$$\nabla^{2}V(r) = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial V}{\partial r} \right) = M_{X}^{2} V(r)$$
(18)

(In 3D polar coordinates system,
$$\frac{\partial^2}{\partial t^2}V(r) = (0)$$
, $\nabla^2 V(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} V(r)\right)$).

Integration of (18) gives the solution of

$$V(r) = -\frac{g^2}{4\pi r}e^{-r/R} \tag{19}$$

Here *g* is an integration constant, and it is interpreted as the *coupling strength* for particle X to the particles A and B.

 \bullet In Yukawa theory, g is analogous to the electric charge in QED, and the analogue of α_{em} is

$$\alpha_X = \frac{g^2}{4\pi}$$

 α_X characterizes the strength of the interaction at distances $r \leq R$.

- Consider a particle being scattered by the potential (19), thus receiving a momentum transfer \dot{q}
- Potential (19) has the corresponding amplitude, which is its Fourier-transform (like in optics):

$$f(\dot{\vec{q}}) = \int V(\dot{\vec{x}}) e^{i\dot{\vec{q}}\dot{\vec{x}}} d^3\dot{\vec{x}}$$
 (20)

Oxana Smirnova Lund University 26

Using polar coordinates, $d^3\vec{x} = r^2\sin\theta d\theta dr d\phi$, and assuming $V(\vec{x}) = V(r)$, the amplitude is

$$f(\vec{q}) = 4\pi g \int_{0}^{\infty} V(r) \frac{\sin(qr)}{qr} r^2 dr = \frac{-g^2}{q^2 + M_X^2}$$

$$(21)$$

• For the point interaction, $M_X^2 \gg q^2$, hence f(q) becomes a constant:

$$f(\dot{q}) = -G = \frac{-4\pi\alpha_X}{M_X^2}$$

That means that the point interaction is characterized not only by $lpha_X$, but by M_X as well

Very useful approximation for weak interactions; in β-decays, this constant is called the "Fermi coupling constant", G_F