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IV. Space-time symmetries
Conservation laws have their origin in symmetries and invariance 
properties of the underlying interactions

Exact symmetry implies a conservation law ⇒ an observable which absolute 
value can not be defined (“non-observable”)

Symmetries, conservation laws and “non-observables”:

Symmetry transformation Conservation law or 
selection rule Non-observable

Space translation: x → x+δx momentum absolute spatial position

Rotation: x → x’ angular momentum absolute spatial direction

Time translation: t → t+δt energy absolute time

Reflection: x → -x parity “handedness” (absolute generalized right/left)

Charge conjugation: q → -q particle-antiparticle symmetry absolute sign of electric charge

ψ → eiqθψ charge q relative phase between states of different q

ψ → eiLθψ lepton number L relative phase between states of different L

ψ → eiBθψ baryon number B relative phase between states of different B
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Translational invariance

When a closed system of particles is moved from from one position in 
space to another, its physical properties do not change

Considering an infinitesimal translation , the 
Hamiltonian of the system transforms as:

In the simplest case of a free particle,

(40)

From Equation  (40) it is clear that

(41)

which is true for any general closed system

xi x'i→ xi δx+=

H x1 x2 … xn, , ,( ) H x1 δx+ x2 δx+ … xn δx+, , ,( )→

H 1
2m
-------∇2– 1

2m
-------

x2

2

∂
∂

⎝
⎜
⎛

–
y2

2

∂
∂

z2

2

∂
∂

⎠
⎟
⎞

+ += =

H x'1 x'2 … x'n, , ,( ) H x1 x2 … xn, , ,( )=
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The Hamiltonian is invariant under the translation operator , which is 

defined as an action onto an arbitrary wavefunction  such that

(42)

For a single-particle state , from (42) one obtains:

Since the Hamiltonian is invariant under translation, 

, and using the definitions once again,

(43)

It is said that  commutes with Hamiltonian  

(a standard notation for this is )

D̂

ψ x( )

D̂ψ x( ) ψ x xδ+( )≡

ψ' x( ) H x( )ψ x( )=

D̂ψ' x( ) ψ' x xδ+( ) H x xδ+( )ψ x xδ+( )= =

D̂ψ' x( ) H x( )ψ x xδ+( )=

D̂H x( )ψ x( ) H x( )D̂ψ x( )=

D̂

D̂ H,[ ] D̂H HD̂–≡ 0=
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Since  is an infinitely small quantity, translation (42) can be expanded:

(44)

Form (44) includes explicitly the momentum operator , hence the 

translation operator  can be rewritten as 

(45)

Substituting (45) to (43), one obtains
(46)

which is simply the momentum conservation law for a single-particle 
state whose Hamiltonian in invariant under translation.

Generalization of (45) and (46) for the case of multiparticle state leads to 
the general momentum conservation law for the total momentum 

xδ

ψ x xδ+( ) ψ x( ) xδ ψ x( )∇⋅+=

p̂ i∇–=

D̂

D̂ 1 i xδ p̂⋅+=

p̂ H,[ ] 0=

p pi
i 1=

n

∑=
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Rotational invariance

When a closed system of particles is rotated about its centre-of-mass, 
its physical properties remain unchanged

Under a rotation about e.g. z-axis through an angle θ, coordinates 
 transform to new coordinates  as follows:

      (47)

Correspondingly, the new Hamiltonian of the rotated system will be the 

same as the initial one, 

Considering rotation through an infinitesimal angle , equations (47)
transform to

xi yi zi, , x'i y'i z'i, ,

x'i xi θcos yi θsin–=
y'i xi θsin yi θcos+=

z'i z=

H x1 x2 … xn, , ,( )=H x'1 x'2 … x'n, , ,( )

θδ

x' x y θ , y'δ– y x θ , z'δ+ z= = =
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A rotational operator  is introduced by analogy with the translation 

operator :

(48)

Expansion to first order in  gives: 

                  

where  is z-component of the orbital angular momentum operator :

 (in classical mechanics )

For a general case of rotation about an arbitrary direction specified by a unit 
vector ,  has to be replaced by the corresponding projection of : , 
giving

(49)

R̂Z

D̂

R̂zψ x( ) ψ x'( )=ψ x y θ y xδθ,z+,δ–( )≡

θδ

ψ x'( ) ψ x( ) θ y x∂
∂

⎝
⎛δ–= x y∂

∂– ⎠
⎞ ψ x( ) 1 i θL̂zδ+( )ψ x( )=

L̂z L̂

L̂z i x y∂
∂ y x∂

∂–⎝ ⎠
⎛ ⎞–= L r p× Lz xpy ypx–( )=⇒=

n L̂Z L̂ L̂ n⋅

R̂n 1 i θ L̂ n⋅( )δ+=
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Considering  acting on a single-particle state  and 
repeating same steps as for the translation case, one gets:

(50)

(51)

This applies to a spin-0 particle moving in a central potential, i.e., in a field 
that does not depend on a direction, but only on the absolute distance.

If a particle posseses a non-zero spin, the total angular momentum is 
the sum of the orbital and spin angular momenta:

(52)

and the wavefunction is a product of the independent space 

wavefuncion  and spin wavefunction :

R̂n ψ' x( ) H x( )ψ x( )=

R̂n H,[ ] 0=

L̂ H,[ ] 0=

Ĵ L̂ Ŝ+=

ψ x( ) χ

Ψ ψ x( )χ=
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For the case of spin-1/2 particles, the spin operator is represented in 
terms of Pauli matrices σ:

(53)

where σ has components (recall Chapter I.):

, , (54)

Let us denote now spin wavefunction for spin “up” state as  
( ) and for spin “down” state as  ( ), so that

(55)

Both α and β satisfy the eigenvalue equations for operator (53):

Ŝ 1
2
---σ=

σ1
0 1
1 0⎝ ⎠

⎜ ⎟
⎛ ⎞

= σ2
0 i–
i 0⎝ ⎠

⎜ ⎟
⎛ ⎞

= σ3
1 0
0 1–⎝ ⎠

⎜ ⎟
⎛ ⎞

=

χ α=
Sz 1 2⁄= χ β= Sz 1– 2⁄=

α 1
0⎝ ⎠

⎜ ⎟
⎛ ⎞

 , β 0
1⎝ ⎠

⎜ ⎟
⎛ ⎞

= =

Ŝzα 1
2
---α , Ŝzβ 1

2
---β–= =
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Analogously to (49), rotation operator for a spin-1/2 particle generalizes to

(56)

When the rotation operator  acts onto a wave function , 

components  and  of  act independently upon the corresponding 
wave functions:

That means that although the total angular momentum has to be conserved, 

the rotational invariance does not in general lead to the conservation of  and  
separately:

However, presuming that the forces can change only orientation of the 
spin, but not its absolute value, one can conclude that

R̂n 1 i θ Ĵ n⋅( )δ+=

R̂n Ψ ψ x( )χ=

L̂ Ŝ Ĵ

ĴΨ L̂ Ŝ+( )ψ x( )χ L̂ψ x( )[ ]χ ψ x( ) Ŝχ[ ]+= =

Ĵ H,[ ] 0=

L̂ Ŝ

L̂ H,[ ] Ŝ H,[ ] 0≠–=
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Good quantum numbers are those which are associated with 
conserved observables (operators commute with the Hamiltonian)

Spin is one of the quantum numbers which characterize any particle – 
elementary or composite. 

Spin of a composite particle is the total angular momentum  of its 
constituents in their centre-of-mass frame

− Quarks are spin-1/2 particles ⇒ the spin quantum number J of hadrons can be either 
integer or half-integer 

− Spin projections on a chosen z-axis – Jz – can take any of 2J+1 values, from -J to J 
with the “step” of 1, depending on the particle’s spin orientation

Usually, it is assumed that  L and S are “good” quantum numbers together with J, 
while Jz depends on the spin orientation.

H L̂2,[ ] H Ŝ2,[ ] 0= =

J
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Using “good” quantum numbers, one can refer to a particle via 
spectroscopic notation, like

(57)

Following chemistry traditions, instead of numerical values of L=0,1,2,3..., letters 
S,P,D,F... are used correspondingly

In this notation, the lowest-lying (L=0) bound state of two particles of spin-1/2 (a 
meson) will be 1S0 or 3S1 

Figure 78:   A naive illustration of possible Jz values for spin-1/2 and spin-1 particles

z
0 1/2 1-1/2-1

spin-1
spin-1/2

Jz:

L2S 1+
J
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For mesons with L ≥ 1, possible states are: 1LL , 3LL+1 , 3LL , 3LL-1

Baryons are bound states of 3 quarks ⇒ there are two orbital angular 
momenta connected to the relative motion of quarks.

Figure 79:   Quark-antiquark states for L=0

Figure 80:   Internal orbital angular momenta of a three-quark state

L=0

S=1/2+1/2=1S=1/2-1/2=0
J=L+S=1J=L+S=0

3S1
1S0

q1

q2

q3

L12

L3
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total orbital angular momentum is L=L12+L3 .

spin of a baryon S=S1+S2+S3 ⇒ S=1/2 or S=3/2

Possible baryon states:
2S1/2 , 4S3/2 (L = 0)
2P1/2 , 2P3/2 , 4P1/2 , 4P3/2 , 4P5/2 (L = 1)
2LL+1/2 , 2LL-1/2 , 4LL-3/2 , 4LL-1/2 , 4LL+1/2 , 4LL+3/2 (L ≥ 2)
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Parity

Parity transformation is the transformation by reflection:

(58)

A system is said to be invariant under parity transformation if 

Parity is not an exact symmetry: it is violated in weak interactions!
Absolute handedness can actually be defined

A parity operator  is defined as

(59)

Two consecutive reflections must result in a system identical to the initial: 
(60)

From equations (59) and (60), 

xi x'i→ xi–=

H x1 x2 … xn–, ,–,–( ) H x1 x2 … xn, ,,( )=

P̂

P̂ψ x t,( ) Paψ x– t,( )≡

P̂2ψ x t,( ) ψ x t,( )=

Pa +1 , -1=
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Consider a particle wavefunction which is a solution of the Dirac equation 

(16): , where u(p) is a four-component spinor 

independent of x. Parity operation on such a wavefunction is then:

(61)

Particle at rest ( ) is an eigenstate of the parity operator:

(62)

Eigenvalue Pa is called the intrinsic parity of a particle a: intrinsic parity is parity of 
a particle at rest

Different particles have different, independent, values of parity Pa. For 
a system of n particles,

ψ
p

x t,( ) u p( )ei px Et–( )=

P̂ψ
p

x t,( ) Pau p–( )ei p–( ) x–( ) Et–( )=

p 0=

P̂ψ0 x t,( ) Pau 0( )e i– Et Paψ0 x t,( )==

P̂ψ x1 x2 … xn t, , ,,( ) P1P2…Pnψ x1 x2 … xn t,–, ,–,–( )≡
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Polar coordinates offer a convenient frame: parity transformation is

and a wavefunction can be written as

(63)

In Equation (63), Rnl is a function of the radius only, and  are spherical 
harmonics, which describe angular dependence.

Under the parity transformation, Rnl does not change, while spherical 
harmonics change as

⇓

A particle with a definite orbital angular momentum is also an eigenstate of parity 
with an eigenvalue Pa(-1)l.

r r'→ r , θ θ'→ π θ , ϕ ϕ'→– π ϕ+= = =

ψnlm x( ) Rnl r( )Yl
m θ ϕ,( )=

Yl
m

Yl
m θ ϕ,( ) Yl

m π θ– π ϕ+,( )→ 1–( )lYl
m θ ϕ,( )=

P̂ψnlm x( ) Paψnlm x–( ) Pa 1–( )lψnlm x( )= =
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Considering only electromagnetic and strong interactions, and using the 
usual argumentation, one can prove that parity is conserved:

Recall: the Dirac equation (16) suggests a four-component wavefunction to 
describe both electrons and positrons: 2 components for electrons, 2 
components for positrons.

Indeed, intrinsic parities of e- and e+ are related, namely:

This is true for all the fermions (spin-1/2 particles), i.e.,
(64)

Experimentally this can be confirmed by studying the reaction e+e- → γγ 
 where initial state has zero orbital momentum and parity of 

If the final state has relative orbital angular momentum lγ, its parity is 

P̂ H,[ ] 0=

Pe+Pe- = 1–

PfPf 1–=

Pe- Pe+

Pγ
2 1–( )

lγ
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Since , from the parity conservation law stems that 

Experimental measurements of lγ confirm (64)

While (64) can be proven in experiments, it is impossible to determine 
 or , since these particles are created or destroyed only in pairs.

Conventionally defined parities of leptons are:
(65)

And consequently, parities of antileptons have opposite sign.
Since quarks and antiquarks are also produced only in pairs, their parities are 
defined also by convention:

(66)

with parities of antiquarks being -1.

Pγ
2 1= Pe- Pe+ 1–( )

lγ=

Pe- Pe+

P
e- P

μ- P
τ-= = 1≡

Pu Pd Ps Pc Pb Pt 1= = = = = =
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For a meson M=(ab), parity is then calculated as
(67)

For the low-lying mesons (L=0) this implies parity of -1, which is confirmed by 
observations

For a baryon B=(abc), parity is given as

(68)

and for antibaryon , similarly to the case of leptons.

For the low-lying baryons with L12=L3=0, (68) predicts positive parities, which is 
also confirmed by experiment.

Parity of the photon can be deduced from the classical field theory, 
considering Poisson’s equation: 

                                           

PM PaPb 1–( )L 1–( )L 1+= =

PB PaPbPc 1–( )
L12 1–( )

L3 1–( )
L12 L3+= =

PB PB–=

∇ E x t,( )⋅ 1
ε0
-----ρ x t,( )=
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Under a parity transformation, charge density changes as 

 and  changes its sign, so that to keep the equation 
invariant, the electric field must transform as

(69)

The electromagnetic field is described by the vector and scalar potentials:

(70)

For photons, only the vector part corresponds to the wavefunction:

Under parity transformation: , and from (69) follows

. (71)

Comparing (71) and (69), one concludes that parity of photon is 

ρ x t,( ) ρ x t,–( )→ ∇

E x t,( ) E x t,–( )–→

E ∇φ– ∂A
∂t
------–=

A x t,( ) Nε k( )ei kx Et–( )=

A x t,( ) PγA x– t,( )→

E x t,( ) PγE x t,–( )→

Pγ 1–=
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Charge conjugation

Charge conjugation replaces particles by their antiparticles, reversing 
charges and magnetic moments 

Charge conjugation is violated in weak interactions
Absolute sign of the electric charge can actually be defined

For strong and electromagnetic interactions, charge conjugation is a 
symmetry:

It is convenient now to denote a state in a compact notation, using Dirac’s “ket” 
representation:  denotes a pion having momentum , or, in general case,

(72)

Next, we denote particles which have distinct antiparticles with “a” , and otherwise 
– with “α”

Ĉ H,[ ] 0=

π+ p,| 〉 p

π+Ψ1 π-Ψ2;| 〉 π+Ψ1| 〉 π-Ψ2| 〉≡
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In such notations, we describe the action of the charge conjugation 
operator upon particles of kind “α” as:

(73)

meaning that the final state acquires a phase factor Cα, and for “a” as:

(74)

meaning that from a particle in the initial state we came to the antiparticle 
in the final state.

Since the consequtive transformation turns antiparticles back to particles, 

 and hence
(75)

For multiparticle states the transformation is:

(76)

Ĉ α Ψ,| 〉 Cα α Ψ,| 〉=

Ĉ a Ψ,| 〉 a Ψ,| 〉=

Ĉ2 1=
Cα 1±=

Ĉ α1 α2 … a1 a2 … Ψ;, , , , ,| 〉 Cα1
Cα2

… α1 α2 … a1 a2 … Ψ;, , , , ,| 〉=
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From (73) follows that particles α=γ,π0,... are eigenstates of  with 
eigenvalues Cα=±1. 

Other eigenstates can be constructed from particle-antiparticle pairs:

For a state of definite orbital angular momentum, interchanging between particle 
and antiparticle reverses their relative position vector, for example:

(77)

For fermion-antifermion pairs theory predicts

(78)

This implies that e.g. a neutral pion π0, being a 1S0 state of uu and dd, 
must have C-parity of 1.

Ĉ

Ĉ a Ψ1 a Ψ2,;,| 〉 a Ψ1 aΨ2;,| 〉 a Ψ1 a Ψ2,;,| 〉±= =

Ĉ π+π- L;| 〉 1–( )L π+π- L;| 〉=

Ĉ ff J L S, ,;| 〉 1–( )L S+ ff J L S, ,;| 〉=
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Tests of C-invariance

Prediction of  can be confirmed experimentally by observing 

the decay π0→ γγ. 

The final state has C=1, and from the relations

follows that . 

Cγ can be inferred from the classical field theory:

under the charge conjugation, and since all electric charges swap, 
electric field and scalar potential also change sign:

C
π0 1=

Ĉ π0| 〉=C
π0 π0| 〉

Ĉ γγ| 〉=CγCγ γγ| 〉= γγ| 〉

C
π0 1=

A x t,( ) CγA x t,( )→
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Upon substitution into (70) this gives .

To check predictions of the C-invariance and of the value of Cγ, one 
can try to look for the decay

If predictions for Cγ and  are true, this mode should be forbidden:

contradicts all previous observations. Indeed, experimentally, this 3γ
mode has never been observed.

Symmetry requirements and corresponding conservation laws explain 
why certain particle decays are never observed – forbidden

E x t,( ) E x t,( ) , φ x t,( ) φ x t,( )–→–→

Cγ 1–=

π0 γ γ γ+ +→

Cπ0

Ĉ γγγ| 〉 Cγ( )3 γγγ| 〉 γγγ| 〉–= =
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Another confirmation of C-invariance comes from observation of 
η-meson decays:

They are electromagnetic decays, and first two clearly indicate that Cη=1. 
Identical charged pions momenta distribution in the last confirms C-invariance.

η γ γ+→

η π0 π0 π0+ +→

η π+ π- π0+ +→
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