VI. The quark model: hadron quantum numbers, resonances

Characteristics of a hadron:

1) Mass

2) Quantum numbers arising from <u>space symmetries</u> : *J*, *P*, *C*. Common notation:

 $-J^{P}$ (e.g. for proton: $\frac{l}{2}^{+}$), or

 $-J^{PC}$ if a particle is also an eigenstate of *C*-parity (e.g. for π^0 : 0⁻⁺)

- 3) <u>Internal</u> quantum numbers: Q and B (always conserved), S, C, \tilde{B}, T (conserved) in electromagnetic and strong interactions)
- How do we know what are quantum numbers of a newly discovered hadron?
- How do we know that mesons consist of a quark-antiquark pair, and baryons – of three quarks?

Some *a priori* knowledge is needed:

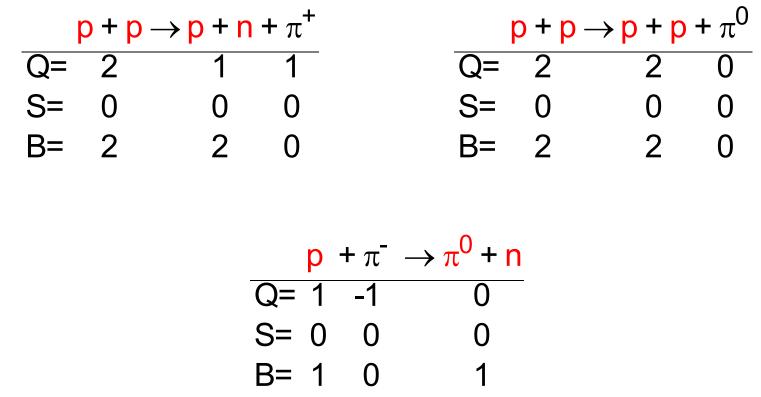
Particle	Mass (Gev/c2)	Quark composition	Q	В	S	С	<i>B</i>
р	0.938	uud	1	1	0	0	0
n	0.940	udd	0	1	0	0	0
K-	0.494	su	-1	0	-1	0	0
D	1.869	dc	-1	0	0	-1	0
B	5.279	bu	-1	0	0	0	-1

For the lightest 3 quarks (u, d, s), possible 3-quark and 2-quark states will be ($q_{i,i,k}$ are u- or d- quarks):

				q _i q _j q _k					
S	-3	-2	-1	0	0	-1	1	0	0
Q	-1	0; -1	1; 0; -1	0 2; 1; 0; -1	0	0; -1	1; 0	0	-1; 1

Hence restrictions arise: for example, mesons with S = -1 and Q = 1 are *forbidden* Particles which fall out of above restrictions are called exotic particles (like ddus, uuuds etc.)

From observations of <u>strong interaction</u> processes, quantum numbers of many particles can be deduced:



Observations of pions confirm these predictions, ensuring that pions are non-exotic particles.

Assuming that K^- is a strange meson, one can predict quantum numbers of Λ -baryon:

$$\frac{K^{-} + p \rightarrow \pi^{0} + \Lambda}{Q^{-} 0 0 0}$$

$$S = -1 0 -1$$

$$B = 1 0 1$$

And further, for K⁺-meson:

$$\frac{\pi^{-} + p \rightarrow K^{+} + \pi^{-} + \Lambda}{Q^{-} 0 \qquad 1 \qquad -1}$$

S= 0 1 -1
B= 1 0 1

All of the more than 200 hadrons of certain existence satisfy this kind of predictions

It so far confirms validity of the quark model, which suggests that only quark-antiquark and 3-quark (or 3-antiquark) states can exist

Pentaquark observation

- In 1997, a theoretical model predicted *pentaquark* possibility with mass 1.54 GeV
- Since 2003, LEPS/SPring-8 experiment in Japan reports observation of a particle with precisely this mass, and having structure consistent with pentaquark

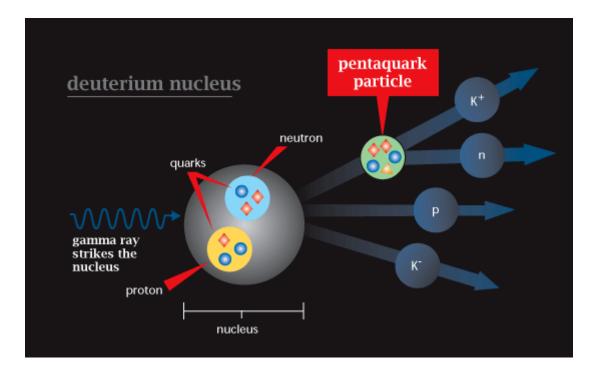


Figure 95: Pentaquark production and observation at JLab Reported Θ^+ particle composition: uudds, B = +1, S = +1, spin = 1/2 LEPS/SPring-8 experimental setup:

```
\gamma + n \rightarrow \Theta^+ (1540) + K^- \rightarrow K^+ + K^- + n
```

Laser beam was shot to a target made of liquid deuterium

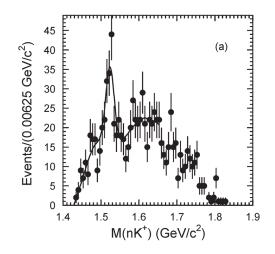


Figure 96: New particle signal (the peak) published by LEPS in 2009

A reference target of liquid hydrogen (only protons) showed no such signal

- Many experiments reported similar observations
- Still, many dedicated precision experiments show no signal
 - Main problem: how to estimate the background. Search continues...

Even more quantum numbers...

It is convenient to introduce some more quantum numbers, which are conserved in strong and electromagnetic interactions:

Sum of all internal quantum numbers, except of Q,

hypercharge $Y \equiv B + S + C + \tilde{B} + T$

Instead of Q :

$$\mathbf{I}_3 \equiv \mathbf{Q} - \mathbf{Y}/2$$

...which is to be treated as a projection of a new vector:

Isospin

 $I \equiv (I_3)_{max}$

so that I_3 takes 2I+1 values from -I to I

◆ I_3 is a good quantum number to denote up- and down- quarks, and it is convenient to use notations for particles as: $I(J^P)$ or $I(J^{PC})$

	В	S	С	\tilde{B}	т	Y	Q	I ₃
u	1/3	0	0	0	0	1/3	2/3	1/2
d	1/3	0	0	0	0	1/3	-1/3	-1/2
S	1/3	-1	0	0	0	-2/3	-1/3	0
С	1/3	0	1	0	0	4/3	2/3	0
b	1/3	0	0	-1	0	-2/3	-1/3	0
t	1/3	0	0	0	1	4/3	2/3	0

^(©) Hypercharge Y, isospin I and its projection I_3 are additive quantum numbers, thus quantum numbers for hadrons can be deduced from those of quarks:

$$Y^{a+b} = Y^{a} + Y^{b}; I^{a+b}_{3} = I^{a}_{3} + I^{b}_{3}$$
$$I^{a+b} = I^{a} + I^{b}, I^{a} + I^{b} - 1, ..., |I^{a} - I^{b}|$$

$$p(938) = uud; n(940) = udd: I(J)^{P} = \frac{1}{2} \left(\frac{1}{2}\right)^{+}$$

proton and neutron are said to belong to isospin doublet

Other examples of *isospin multiplets*:

$$K^{+}(494) = u\overline{s}; K^{0}(498) = d\overline{s}: I(J)^{P} = \frac{1}{2}(0)^{-}$$

$$\pi^{+}(140) = u\overline{d}; \pi^{-}(140) = d\overline{u}: I(J)^{P} = 1(0)^{-} \text{ and }$$

$$\pi^{0}(135) = (u\overline{u} - d\overline{d})/\sqrt{2}: I(J)^{PC} = 1(0)^{-+}$$

Principle of isospin symmetry: it is a good approximation to treat uand d-quarks as having same masses

Particles with I=0 are called *isosinglets* :

$$\Lambda(1116) = uds, I(J)^{P} = O(\frac{1}{2})^{+}$$

Objective By introducing isospin, we get more criteria for non-exotic particles:

			-	q _i q _j q _k					-
S	-3	-2	-1	0	0	-1	1	0	0
Q	-1	0; -1	1; 0; -1	2; 1; 0; -1	0	0; -1	1; 0	0	-1; 1
I	0	1/2	0; 1	0 2; 1; 0; -1 3/2; 1/2	0	1/2	1/2	0; 1	0; 1

In all observed interactions (save pentaquarks) isospin-related criteria are satisfied as well, confirming once again the quark model.

* This allows predictions of possible multiplet members: suppose we observe production of the Σ^+ baryon in a strong interaction:

$$\mathsf{K}^{-} + \mathsf{p} \to \pi^{-} + \Sigma^{+}$$

which then decays weakly :

$$\Sigma^{+} \rightarrow \pi^{+} + n$$
$$\Sigma^{+} \rightarrow \pi^{0} + p$$

It follows that Σ^+ baryon quantum numbers are: B = 1, Q = 1, S = -1 and hence Y = 0 and I₃ = 1.

♦ Since $I_3 > 0 \implies I \neq 0$ and there are more multiplet members!

When a baryon has I₃=1, the only possibility for isospin is I=1, and we have a triplet:

S⁺, S⁰, S[−]

Indeed, all such particles have been observed:

$$K^{-} + p \rightarrow \pi^{0} + \Sigma^{0}$$
$$\downarrow \rightarrow \Lambda + \gamma$$
$$K^{-} + p \rightarrow \pi^{+} + \Sigma^{-}$$
$$\downarrow \rightarrow \pi^{-} + n$$

Masses and quark composition of Σ -baryons are:

$$\Sigma^{+}(1189) = uus; \Sigma^{0}(1193) = uds; \Sigma^{-}(1197) = dds$$

It indicates that d-quark is heavier than u-quark, under following assumptions:

- (a) strong interactions between quarks do not depend on their flavour and give contribution of M_0 to the baryon mass
- (b) electromagnetic interactions contribute as $\delta \sum e_i e_j$, where e_i are quark charges and δ is a constant

The simplest attempt to calculate mass difference of up- and downquarks:

$$M(\Sigma^{-}) = M_0 + m_s + 2m_d + \delta/3$$
$$M(\Sigma^{0}) = M_0 + m_s + m_d + m_u - \delta/3$$
$$M(\Sigma^{+}) = M_0 + m_s + 2m_u$$
$$\bigcup$$

$$m_d - m_u = [M(\Sigma^-) + M(\Sigma^0) - 2M(\Sigma^+)] / 3 = 3.7 \text{ MeV/c}^2$$

♦ NB : this is a very simplified model, as under these assumptions M(Σ⁰) = M(Λ), while their mass difference M(Σ⁰) - M(Λ) ≈ 77 Mev/c².

Generally, combining other methods:

$$2 \le m_d - m_u \le 4 (MeV/c^2)$$

which is negligible comparing to hadron masses (but not if compared to estimated u and d masses themselves)

Resonances

Resonances are highly unstable particles that decay by strong interaction (lifetimes about 10⁻²³ s)

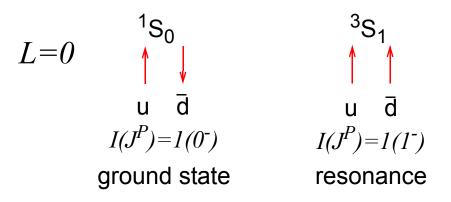


Figure 97: Example of a $q\overline{q}$ system in ground and first excited states

If a ground state is a member of an isospin multiplet, then resonant states will form a corresponding multiplet too

Since resonances have very short lifetimes, they can only be detected by registering their *decay products*:

$$\pi^- + p \rightarrow n + X$$

 $\longrightarrow A + B$

Invariant mass of a particle is measured via energies and masses of its decay products (see 4-vectors in Chapter I.):

$$W^{2} \equiv (E_{A} + E_{B})^{2} - (\vec{p}_{A} + \vec{p}_{B})^{2} = E^{2} - \vec{p}^{2} = M^{2}$$
(106)

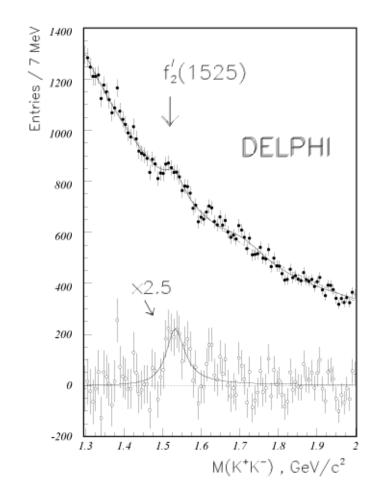


Figure 98: A typical resonance peak in K⁺K⁻ invariant mass distribution

Resonance peak shapes are approximated by the Breit-Wigner formula:

$$N(W) = \frac{K}{(W - W_0)^2 + \Gamma^2 / 4}$$
(107)

$$N_{max} = \frac{1}{1 + 1}$$

$$N_{max/2} = \frac{1}{1 + 1}$$

$$W_0 = W$$

Figure 99: Breit-Wigner shape

O Mean value of the Breit-Wigner shape is the mass of a resonance: $M=W_0$

Γ is the width of a resonance, and it has the meaning of inverse mean lifetime of particle at rest: $\Gamma = 1/\tau$

Internal quantum numbers of resonances are also derived from their decay products:

$$X^0 \rightarrow \pi^+ + \pi^-$$

for such X^0 : B = 0; $S = C = \tilde{B} = T = 0$; $Q = 0 \Rightarrow Y=0$ and $I_3=0$.

^(o) When $I_3=0$, to determine whether I=0 or I=1, searches for isospin multiplet partners have to be done.

Example: $\rho^0(769)$ and $\rho^0(1700)$ both decay to $\pi^+\pi^-$ pair and have isospin partners ρ^+ and ρ^- :

$$\pi^{\pm} + p \rightarrow p + \rho^{\pm}$$
$$\longrightarrow \pi^{\pm} + \pi^{0}$$

By measuring angular distribution of $\pi^+\pi^-$ pair, the <u>relative</u> orbital angular momentum of the pair *L* can be determined, and hence spin and parity of the resonance X⁰ are (S=0):

$$J = L; P = P_{\pi}^{2}(-1)^{L} = (-1)^{L}; C = (-1)^{L}$$

Some excited states of pion:

resonance	I(J ^{PC})
ρ ⁰ (769)	1(1)
f ⁰ (1275)	0(2 ⁺⁺)
ρ ⁰ (1700)	1(3)

◎ B=0 : meson resonances, B=1 : baryon resonances.

Many baryon resonances can be produced in pion-nucleon scattering:

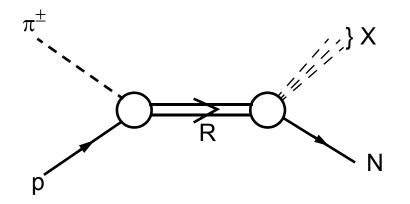


Figure 100: Formation of a resonance R and its decay into a nucleon N

Peaks in the observed total cross-section of the π^{\pm} p-reaction correspond to resonance formation

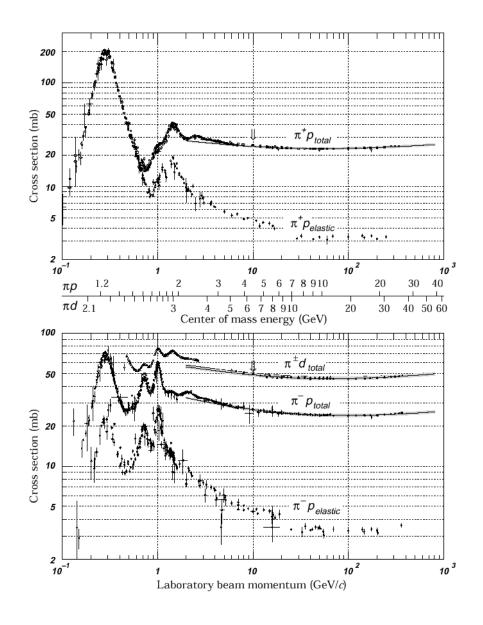


Figure 101: Scattering of π^+ and π^- on proton

All the resonances produced in pion-nucleon scattering have the same internal quantum numbers as the initial state:

$$B = 1; S = C = \tilde{B} = T = 0$$

and thus Y=1 and Q= I_3 +1/2

Possible isospins are I=1/2 or I=3/2, since for pion I=1 and for nucleon I=1/2

- ◎ I=1/2 \Rightarrow N-resonances (N⁰, N⁺)
- I=3/2 ⇒ Δ-resonances (Δ⁻, Δ⁰, Δ⁺, Δ⁺⁺)

Figure 101: peaks at \approx 1.2 GeV/c² correspond to Δ^{++} and Δ^{0} resonances:

- ♦ Fits by the Breit-Wigner formula show that both Δ⁺⁺ and Δ⁰ have approximately same mass of ≈1232 MeV/c² and width ≈120 MeV/c².
 (a) Studies of angular distributions of decay products show that $I(J^P) = \frac{3}{2}(\frac{3}{2})^+$
 - Semaining members of the multiplet are also observed: Δ^+ and Δ^-
- ♦ There is no lighter state with these quantum numbers $\Rightarrow \Delta$ is a ground state, although observed as a resonance.

Quark diagrams

 Quark diagrams are convenient way of illustrating strong interaction processes

Consider an example:

$$\Delta^{++} \to p + \pi^+$$

Solution The only 3-quark state consistent with Δ^{++} quantum numbers (Q=2) is (uuu), while p=(uud) and $\pi^{+}=(ud)$

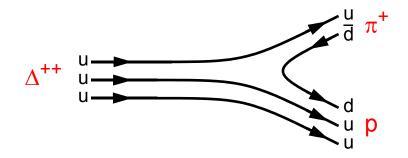


Figure 102: Quark diagram of the reaction $\Delta^{++} \rightarrow p + \pi^{+}$

Analogously to Feinman diagrams:

- log arrow pointing rightwards denotes a particle, and leftwards antiparticle
- time flows from left to right
- Allowed resonance formation process:

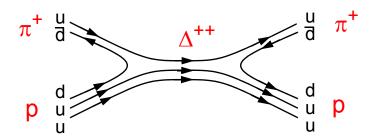


Figure 103: Formation and decay of Δ^{++} resonance in π^+p elastic scattering

Hypothetical exotic resonance:

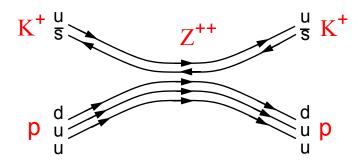


Figure 104: Exotic resonance Z⁺⁺ in K⁺p elastic scattering

Quantum numbers of such a particle Z⁺⁺ are exotic. There are no resonance peaks in the corresponding cross-section, but data are scarce:

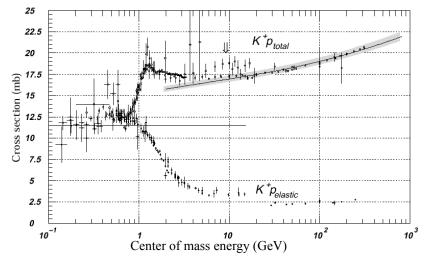


Figure 105: Cross-section for K⁺p scattering

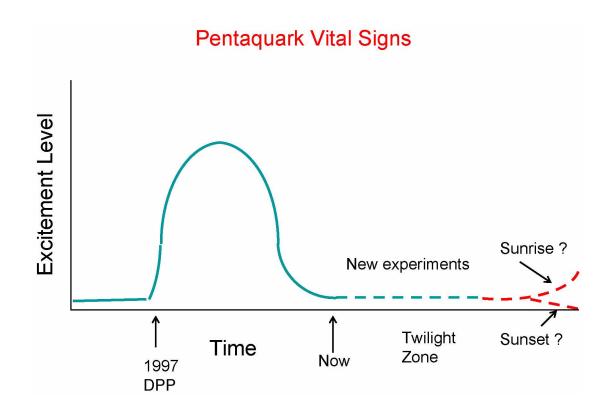


Figure 106: Pentaquark searches status as of October 2005, by Paul Stoler