Astroparticle Physics

Lecture 2

Lund, March 2014

- The propagation from the sources to us
- Detectors for astroparticle physics
- Open problems, and future solutions?

Alessandro De Angelis INFN-U.Udine/INAF/LIP-IST Lisboa

THE PROPAGATION

INTERACTION WITH THE SOLAR SYSTEM AND THE EARTH

Propagation of charged CR in the Universe E

- Gyroradius
- B in the Galaxy: a few µG; outside the Galaxy: 1nG > B > 1 pG
- If you want to look at the GC (d ~ 8 kpc) you need E > 2 10¹⁹ eV
 - But only 1 particle / km2 / year
 - And: no galactic emitters expected at this energy
- But in principle one could look outside the galaxy, were B is smaller and there are SMBHs...
 - No: the GZK cutoff provides a maximum E ~ 10¹⁹ eV

The Greisen-Zatsepin-Kuzmin (GZK) cutoff

≈ 6 Mpc

Propagation of γ -rays in the Universe

For gamma rays, relevant background component is optical/infrared (EBL)
different models for EBL: minimum density given by cosmology/star formation

 e^+

Interaction in the atmosphere/Earth

p/nucleus/gamma/e+-

Hajo Drescher, Frankfurt U.

time = -900 µs

Hajo Drescher, Frankfurt U.

time = -800 µs

Hajo Drescher, Frankfurt U.

time = -700 µs

Hajo Drescher, Frankfurt U.

time = -600 µs

Hajo Drescher, Frankfurt U.

time = -500 µs

Hajo Drescher, Frankfurt U.

time = -400 µs

The events: first interaction

Hajo Drescher, Frankfurt U.

time = -300 µs

The events: shower development

Hajo Drescher, Frankfurt U.

time = -200 µs

The events: shower development

Hajo Drescher, Frankfurt U.

time = -100 µs

The events: shower hits Earth surface

 $P(Fe) Air \rightarrow Baryons (leading, net-baryon \neq 0)$

Hajo Drescher, Frankfurt U.

Extensive Air Showers (EAS)

Electromagnetic showers

- When a high-energy e or γ enters an absorber, it initiates an em cascade as pair production and bremsstrahlung generate more e and γ with lower energy
- The ionization loss becomes dominant < a critical energy ${\rm E_c}$
 - $E_c \sim 88$ MeV in air, $\sim (550/Z)$ MeV
 - Approximate scaling in $y = E/E_c$
 - The longitudinal development ~scales as the radiation length in the material: t = x/Xo (~440 m in air at NTP)
 - The transverse development scales approximately with the Moliere radius $R_{\rm M}$ ~ (21 MeV/E_c) Xo
 - In average, only 10% of energy outside a cylinder w/ radius R_M
 - In air, $R_M \sim 80$ m; in water $R_M \sim 9$ cm
- Electrons/positrons lose energy by ionization during the cascade process
- Not a simple sequence: needs Monte Carlo calculations

QED HE processes: bremsstrahlung for electrons...

- (and pair production for photons).
 Forbidden in vacuo by 4-momentum conservation
 - Require interaction with the medium
- Bremsstrahlung (braking radiation): photons of momentum q<E_e emitted with probability ~proportional to 1/q
 - (and collimated: ~ m_e/E)

ie, energy emission is ~constant for each interval of photon energy; total is propto E

 The dependence on the material appears through the radiation length Xo:

 $dE_e/dx = -1/Xo$

- Xo can be found in tables. It is ~440 m for air at NTP, ~43 cm for water; for density 1 g/cm³ roughly proportional to A/Z²
- Collision energy loss is almost constant (plateau)

QED HE processes: ...pair production for photons

• Pair production: $\lambda = (9/7)$ Xo for $E_{\gamma} >> 2m_e$

Energy spectrum ~ flat

An analytic model: Rossi's "approximation B"

 $t_{max} + 1.4$

v

- Rossi in 1941 published an analytical formulation for the shower development as a set of 2 integro-differential equations under the approximation that:
 - Electrons lose energy by ionization & bremsstrahlung; asymptotic formulae hold
 - Photons undergo pair production only; asymptotic formulae hold ($E > 2 m_e$)
- Very good approximation until E ~ Ec

Y

Peak of shower, tmax Centre of gravity, tmed Number e^+ and e^- at peak Total track length T

A snapshot of Rossi's equations (you can solve them, but...)

$$\frac{\partial \pi(E,t)}{\partial t} = 2 \int_0^1 \gamma \left(\frac{E}{u},t\right) \psi_0(u) \frac{du}{u} - \int_0^1 \left[\pi(E,t) - \frac{1}{1-v} \pi \left(\frac{E}{1-v},t\right)\right] \varphi_0(v) dv + \epsilon \frac{\partial \pi(E,t)}{\partial E}$$

$$\frac{\partial \gamma(W, t)}{\partial t} = \int_0^1 \pi \left(\frac{W}{v}, t\right) \varphi_0(v) \frac{dv}{v} - \sigma_0 \gamma(W, t)$$

A simplified approach (Heitler)

- Qualitative features may be obtained from a simple model
 - Each electron with E>E_C travels 1 Xo and then gives up half of its energy to a bremsstrahlung photon
 - Each photon with E>E_c travels
 1 Xo and then creates an e+epair with each particle taking E/2
 - 3. Electrons with E<E_C cease to radiate and lose the rest of their energy by collisions
 - Ionization losses are negligible for E>E_C

Results from the simplified approach

 If the initial electron has energy E₀>>E_C, after t Xo the shower will contain 2^t particles. ~equal numbers of e+, e-, γ, each with an average energy

$$\mathsf{E}(\mathsf{t}) = \mathsf{E}_0/2^\mathsf{t}$$

 The multiplication process will cease when E(t)=E_C

$$t_{max} = t \left(E_C \right) \equiv \frac{\ln \left(E_0 / E_C \right)}{\ln 2}$$

and the number of particles at this point will be

$$N_{max} = \exp\left(t_{max} \ln 2\right) = E_0 / E_C$$

Energy measurement

 Errors asymptotically dominated by statistical fluctuations:

$$\frac{\sigma_E}{E} \cong \frac{k_E}{\sqrt{E}} \oplus c$$

Hadronic showers

- Although hadronic showers are qualitatively similar to em, shower development is more complex because many different processes contribute
 - Larger fluctuations
- Some of the contributions to the total absorption may not give rise to an observable signal in the detector
 - Examples: nuclear excitation and leakage of secondary muons and neutrinos
- Depending on the proportion of π^0 s produced in the early stages of the cascade, the shower may develop predominantly as an electromagnetic one because of the decay $\pi^0 \rightarrow \gamma \gamma$
- The scale of the shower is determined by the nuclear absorption length λ_H
 - Typically $\lambda_H > Xo$
 - Larger lateral width

String fragmentation

Think of the gluons being exchanged as a spring... which if stretched too far, will snap! Stored energy in spring \rightarrow mass !

K-

 K^+

 π^{-}

 \mathcal{U}

S

 \overline{S}

U

 $\overline{\mathcal{U}}$

 \overline{d}

 \overline{d}

d

 \overline{u} \overline{u}

In this way, you can see that quarks are always confined inside hadrons (that's **CONFINEMENT**) !

Neutrino interactions: no interaction in space;

with Earth

 $\sigma_v \uparrow E_v$

The Earth is opaque to $v_e v_\mu$

Above $E_{\tau} \sim 10^7 \text{ GeV:} L_{\tau \text{int}} < L_{\tau \text{decay}}$

THE DETECTION

Cosmic ray detection in space

AGASA

111 detectors for electrons

Ground arrays measurements

From (n_i, t_i): The direction The core position The Energy

Fluorescence detectors:

Fly's Eye

Air shower stereo image

Fluorescence from space

JEM-EUSO

The Pierre Auger Observatory

AUGER OBSERVATORY

South Hemisphere

Shower detection

telescope building "Los Leones"

LIDAR station

communication tower

Gamma ray detection

=> GeV (HE) detection requires satellites; TeV (VHE) can be done at ground

Precision Si-strip Tracker (TKR)

18 XY tracking planes

Single-sided silicon strip detectors 228 μm pitch, 8.8 10⁵ channels

n direction

Satellites (AGILE, Fermi)
 – Silicon tracker (+calorimeter)

Detectors

- Cherenkov telescopes (H.E.S.S., MAGIC, VERITAS)
- Extensive Air Shower det. (ARGO, MILAGRO): RPC, scintillators, water Cherenkov

HEP detectors!

The GLAST/Fermi observatory and the LAT

CAL

International collaboration USA-Italy-France-Japan-Sweden (it has a small precursor: the all-Italian AGILE)

LAT overview

Si-strip Tracker (TKR)

18 planes XY ~ 1.7 x 1.7 m² w/ converter

Single-sided Si strips 228 μ m pitch, ~10⁶ γ channels

Measurement of the gamma direction

Astroparticle groups INFN/University Bari, Padova, Perugia, Pisa, Roma2, Udine/Trieste

The Silicon tracker is mainly built in Italy

Italy is also responsible for the detector simulation, event display and GRB physics

AntiCoincidence Detector (ACD) 89 scintillator tiles around the TKR Reduction of the background from charged particles

Calorimeter (CAL)

Array of 1536 CsI(TI) crystals in 8 layers Measurement of the electron energy

Detection of a gamma-ray

Ground-based telescopes still needed for VHE...

• Peak eff. area of Fermi: 0.8 m²

From strongest flare ever recorde of very high energy (VHE) γ -rays:

1 photon / m² in 8 h above 200 GeV (PKS 2155, July 2006)

- The strongest steady sources are > 1 order of magnitude weaker!
- Besides: calorimeter depth \leq 10 X₀
- ⇒ VHE astrophysics (in the energy region above 100 GeV) can be done only at ground

EAS

MILAGRO (New Mexico@2600m)
water Cherenkov,
60x80m^2 + outriggers,
γ/h: Muon-identification

in second layer)

TIBET-AS (@4300M A.S.L.) Scintillator-Array, 350x350M² See: Crab, Mkn421 Argo-YBJ 6500м² RPC

The IACT technique

→ Shower energy Image orientation

→ Shower direction

Image shape

Primary particle

Incoming

 $\gamma + p \rightarrow e^+ e^-$

γ-ray

e Threshold @ sl: 21 MeV

Maximum of a 1 TeV shower

 $\theta_{\rm c} \sim 1.3^{\rm o}$

ane visible Angular spread ~ 0.5° Montant ignal ~ 3ns

~ 120 m

Signal duration: ~ 3ns

MAGIC at La Palma

(2 x 17 meters diameter telescopes)

An international collaboration of 160 scientists from institutes in Germany, Italy, Spain, Japan, Switzerland, Finland, Poland, Bulgaria, Croatia

Commissioned as a stereo system since May 2010

(was mono since 2004)

MAGIC

Instr.	Tels.	Tel. A	FoV	Tot A	Thresh.	\mathbf{PSF}	Sens.
	#	(m^2)	(°)	(m^2)	$({\rm TeV})$	(°)	(%Crab)
H.E.S.S.	4	107	5	428	0.1	0.06	0.7
MAGIC	2	236	3.5	472	0.05(0.03)	0.06	0.8
VERITAS	4	106	4	424	0.1	0.07	0.7

VERITAS: 4 telescopes (~12m) in Arizona operational since 2006

HESS 2: 5th telescope (27commissioned in a few mo onal since

28 will be

Complementarity IACT/Fermi

World-wide Collaboration 25 countries, 132 institutes >800 scientists

10 fold sensitivity of current instruments 10 fold energy range improved angular resolution two sites (North / South)

of current instruments energy range

The future in

VHE gamma ray

astrophysics:

High priority from the main European and US reviews Timescale: provides ull 2014/15, then start construction

Alessandro De Angelis

Design: 23 m Large Telescopes

optimized for the range below 200 GeV

- 27.8 m focal length
- 4.5° field of view

400 m² dish area

1.5 m sandwich

mirror facets

On (GRB) target

in < 20 s

Design: Medium-Sized 12 m Telescope

optimized for the 100 GeV to ~10 TeV range

16 m focal length

7-8° field of view

Future in EAS detectors: HAWC

- EAS detectors have advantages on Cherenkov: duty cycle, serendipitous searches
- But the EAS up to now (Argo, Milagro, Tibet) were not sensitive enough
- The High-Altitude Water Cherenkov Observatory, or HAWC, is a facility designed to observe TeV gamma rays and cosmic rays with large FOV, with sensitivity better than 10% Crab in 1 year between 200 GeV and 100 TeV

• HAWC is under construction at 4100 m asl in Mexico

Neutrino detection

- Since cross section is small, needs large converters (and large detection volumes)
 - Use the Earth as converter
 - Make Cherenkov
 detectors using as fluids
 the sea and the Antarctica
 ices

IceCube / Deep Core

- 5160 optical sensors between 1.5 ~ 2.5 km
- detects > 200 neutrinoinduced muons and ~ 2 x10⁸ cosmic ray muons per day

DOM-Digital Optical Module

Signals and Backgrounds

Three Mediterranean Pilot Projects

OPEN QUESTIONS

Main open problems on VHE photons (with emphasis on fundamental physics)

Cosmic Rays

Transparency of the Universe;
 Tests of Lorentz Invariance;
 Axion-Like Particles

Dark matter & new particles

CONSEIL EUROPEEN POUR LA RECHERCHE NUCLEAIRE CERN EUROPEAN COUNCIL FOR NUCLEAR RESEARCH Dryanisme intergouvernemental créé par l'Accord de Genève du 15 Février 1952

CONVENTION

FOR THE ESTABLISHMENT OF A EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PARIS, 1ST JULY, 1953

CONVENTION POUR L'ETABLISSEMENT D'UNE ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

Questions on Cosmic Rays

- CR at 100 TeV x 10 come from SNR; still >1 decade from the knee...
- Are the other galactic sources of gamma rays important for the formation of CR?
 - Binaries accreting galactic BH

— . . .

– Pulsars and electron-positron pairs

- How are CR accelerated in AGN?
- Are they accelerated also in GRB?
 (Need improvement of energy range, PSF, stat)

Propagation of γ-rays

For gamma rays, relevant background component is optical/infrared (EBL)
different models for EBL: minimum density given by cosmology/star formation

 e^+

If there is a problem

Explanations from the standard ones

- very hard emission mechanisms with intrinsic slope < 1.5 (Stecker 2008)
- Very low EBL, plus observational bias, plus a couple of "wrong" outliers

to almost standard

 γ-ray fluxes enhanced by relatively nearby production by interactions of primary cosmic rays or v from the same source

to possible evidence for new physics

- Oscillation to a light "axion"? (DA, Roncadelli & MAnsutti [DARMA], PRD2007, PLB2008)
- Axion emission (Simet+, PRD2008)
- A combination of the above (Sanchez Conde et al. PRD 2009)

Moving to very fancy explanations of unexpected results on the transparency of the Universe

- Emission models are more complicated than we think (but only for sources far away: nearby sources behave well)
- VHE photons are generated on the way (interaction of cosmic rays, neutrinos and photons with intergalactic medium: Sigl, Essey, Kusenko, ...)
- Something is wrong in the $\gamma\gamma$ -> e+e- rate calculation
 - Vacuum energy (new sterile particles coupling to the photons): DARMA,
 - For example an ALP: consistent values for m, g=(1/M) in a range not experimentally excluded ("Se non e' vero e' ben pensato")
 - \Box $\gamma\gamma \rightarrow e+e-cross section$

QED calculations appears to be in a safe region; then it must be

• the boost (Lorentz transformations; relativity)

Is Lorentz invariance exact? Due to large E, d astroparticles are a crash test

- For longtime violating Lorentz invariance/Lorentz transformations/Einstein relativity was a heresy
 - Is there an aether? (Dirac 1951)
 - Many preprints, often unpublished (=refused) in the '90s
 - Gonzales-Mestres, ADA, Jacobson, ...
- Then the discussion was open
 - Trans-GZK events? (AGASA collaboration 1997-8)
 - LIV => high energy threshold phenomena: photon decay, vacuum Cherenkov, GZK cutoff (Coleman & Glashow 1997-8)
 - GRB and photon dispersion (Amelino-Camelia et al. 1997)
 - Framework for the violation (Colladay & Kostelecky 1998)
 - LIV and gamma-ray horizon (Kifune 1999)
Variability

Tests of Lorentz violation: the name of the game

The Dark Matter Problem

Hypothesized solution: the visible galaxy is embedded in a much larger halo of Dark Matter (neutral; weakly interacting; mix of particles and antiparticles - in SUSY

Which signatures for gamma detectors?

- Self-annihilating WIMPs, if Majorana (as the neutralino in SUSY), can produce:
 - Photon lines ($\gamma\gamma$, γ Z)
 - Photon excess at E < m from hadronization
- Excess of antimatter (annihilation/decay)
- Excess of electrons, if unstable

Energy (GeV)

Many Places to Seek DM!

Galactic Center

Spectral Features

Lines, endpoint Bremsstrahlung,... No astrophysical uncertainties, good source Id, but low sensitivity because of expected small BR

Extra-galactic

Large statistics, but astrophysics, galactic diffuse backgrounds

No signal from possibly expected sources, yet

77

Cosmic rays: the PAMELA anomaly

Unexpected increase in e⁺/e⁻ ratio (PAMELA) confirmed by Fermi

Moon shadow observation mode developed for the MAGIC telescopes [MAGIC ICRC 2011] sensitivity (50h): 300-700GeV: ~4.4% Crab

measurement possible in few years

Alessandro De Angelis

probe e+/e- ratio at 300-700 GeV

A wish list for the future

N.E. Region F(E) (TeV NE extend E range beyond 50 TeV SW I Galactic sources & CR better angular resolution 10-12 larger FO S.W. Region 10-1 15h04m 15h02m RA (hours) (>200 GeV) [10 ° cm² s monitor many objects simult. AGN & gamma prop. • extend E range under 50 GeV 10x sources fative physics whereal, x 2 finitive physics w/o gal $(B_s = 10 \text{ pG}, r_B \le r_h (3))$ New particles, new phenomena • better flux sensitivity dark matter and astroparticle physics • lower threshold Alessandro De Angelis 80 100 1000 E[GeV]

Complete CR map of the entire TeV sky

ARGO-YBJ + IceCube-59

Correlation with AGNs

Vernon-Cetty-Vernon AGN catalog

, E> 57 EeV, z<0.018, distance < 3.1 deg.

 $P = 0.006, f = 33 \pm 5\%$

An opportunity to Particle Physics

Energy spectrum

Energy spectrum (interpretation)

GZK: p $\gamma \rightarrow \Delta \rightarrow \pi N$

The "disappointing" model: heavy nuclei

Mixed models: fine tuning!

Spectrum of UHECRs multiplied by E³ observed by HiRes I and Auger. Overlaid are simulated spectra obtained for different models of the Galactic to extragalactic transition and different injected chemical compositions and spectral indices, s.

Cross section & composition

Cosmic Rays and LHC

Small-x region (LHC as a pathfinder for CR, and vice-versa)

Cross sections: something not understood in Auger

Showar Maximum X

These suggest high cross section and high multiplicity at high energy.

Heavy nuclei?

Or protons interacting differently than expected?

Information lacking for the EHE (anisotropic?) energy regime!

(Pimenta)

Cosmic Rays and LHC: total cross section

Tune EAS simulations

at ~100 TeV

=> A new physics scale?

In astroparticle physics we are exploring the 100 TeV energy scale, well beyond LHC, and maybe we are touching something fundamental!