# **XI. Neutrino physics**

Neutrinos are perhaps the least understood SM particles due to the very small cross sections of their interactions.

In the Standard Model, neutrinos are massless and always left-handed, couple to weak bosons W and Z

Observed neutrino oscillations prove that neutrinos do have mass

#### Some open questions are:

- What are neutrino masses and do they contribute to the Dark Matter?
- Is neutrino its own antiparticle?
- On neutrinos violate CP leading to matter-antimatter asymmetry?
- What are neutrino mixing parameters?



## Neutrino sources:

- The Sun
- Osmic rays ("atmospheric neutrinos")
- Secondary accelerator beams
- Nuclear reactors
- Natural radioactivity
- Supernovae
- The Big Bang









#### Neutrino masses

Idea behind experiments: if neutrinos have non-zero masses, they must be subject to *neutrino-mixing* 

Recall: quark mixing in weak interactions

$$d' = d\cos\theta_C + s\sin\theta_C$$
$$s' = -d\sin\theta_C + s\cos\theta_C$$

By analogy, neutrinos can be represented as linear combinations:

$$v_e = v_1 \cos \alpha + v_2 \sin \alpha$$

$$v_u = -v_1 \sin \alpha + v_2 \cos \alpha$$
(220)

Here  $v_1$  and  $v_2$  are mass eigenstates with masses  $m_1$  and  $m_2$  ( $v_e$  and  $v_{\mu}$  are flavor eigenstates)

For neutrinos, flavor eigenstates do not coincide with mass eigenstates!



Figure 180: Flavor eigenstates of neutrinos are superpositions of three mass eigenstates

- Mixing angle α is determined from experiments that observe *neutrino* oscillations
- Neutrino oscillation: a beam of  $v_e$  develops  $v_\mu$  component as it travels through space, and vice versa

In Dirac notation, the initial superposition is (for 2 eigenstates):

$$|v_{e},\vec{p}\rangle = \cos\alpha|v_{1},\vec{p}\rangle + \sin\alpha|v_{2},\vec{p}\rangle$$
(221)

and after a period of time *t* it evolves to:

$$e^{-iE_{1}t}\cos\alpha|v_{1},\vec{p}\rangle + e^{-iE_{2}t}\sin\alpha|v_{2},\vec{p}\rangle$$
(222)

here  $e^{-iE_it}$  are oscillating time factors (recall strangeness oscillation in Section V.)

Form (222) is not a pure  $v_e$  state anymore, but a mixture:

$$A(t)|v_{e},\vec{p}\rangle + B(t)|v_{\mu},\vec{p}\rangle$$
(223)

where the  $v_{\mu}$  states are, similarly to (221):

$$|v_{\mu},\vec{p}\rangle = -\sin\alpha |v_{1},\vec{p}\rangle + \cos\alpha |v_{2},\vec{p}\rangle$$
(224)

The functions A(t) and B(t) hence are:

$$A(t) = e^{-iE_{1}t}\cos^{2}\alpha + e^{-iE_{2}t}\sin^{2}\alpha$$
  

$$B(t) = sin\alpha cos\alpha [e^{-iE_{2}t} - e^{-iE_{1}t}]$$
(225)

Squares of A(t) and B(t) are probabilities to find  $v_e$  (respective  $v_{\mu}$ ) in a beam of electron neutrinos  $v_e$ :

$$P(v_e \to v_e) = |A(t)|^2 = 1 - P(v_e \to v_\mu)$$
 (226)

$$P(v_e \to v_{\mu}) = |B(t)|^2 = \sin^2(2\alpha)\sin^2\frac{(E_2 - E_1)t}{2}$$
(227)

✤ If neutrinos have equal (zero) masses  $\Rightarrow E_1 = E_2 \Rightarrow$  no oscillations

For 
$$E >> m$$
 and  $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$ ,  $E_2 - E_1 \cong (\Delta m_{21}^2)/(2E)$ :  
 $P(v_e \to v_\mu) = sin^2(2\alpha)sin^2\left(\frac{\Delta m^2 L}{4E}\right)$ 
(228)

Here  $\Delta m^2$  and  $\alpha$  (better known as  $\theta_{ij}$ ) are measured, while *E* and *L* are experiment parameters

Oxana Smirnova

- If mass eigenstates have different masses, they travel at different speeds (assuming the energy is the same)
- Probability to detect a neutrino of a given flavor depends on the distance travelled
- In general, for 3 flavors, a 3x3 matrix must be used (similarly to CKM):



Figure 181: Flavor eigenstates are a "rotation" of mass eigenstates Matrix in Fig.181 is called U<sub>PMNS</sub> (Pontecorvo-Maki-Nakagawa-Sakata)

#### Two-neutrino oscillations



Figure 182: Electron (anti)neutrino survival probability

## Three-neutrino oscillations

The PMNS matrix can be decomposed into four components

- Three 2-dimensional rotation matrices, each characterised by different mixing angle
- The last one ( $U_{Maj}$ ) does not correspond to oscillations

Three independent mixing angles  

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\text{CP}}} \sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{\text{CP}}} \sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times U_{\text{Maj}}^{\text{diag}}$$
(229)

Measured from atmospheric and accelerator neutrinos Sub-dominant oscillations, measured in reactor and accelerator experiments *Measured from Solar and reactor neutrinos* 

Falk

цi

# <u>Mass hierarchy</u>

 $\bigcirc$  As of today, we know that  $v_2$  has higher mass than  $v_1$ 

 $\bigcirc$  We however don't know yet whether  $\nu_3$  is the heaviest or the lightest



Figure 183: Two possible mass hierarchies: normal and inverted

# Tests of neutrino oscillations

Methods to detect neutrino oscillations:

O Appearance search

Disappearance test

•  $v_e$  and  $v_{\mu}$  can be distinguished by their interaction with neutrons: former produce electrons and latter - muons:

 $v_e + n \rightarrow e^- + p$  $v_\mu + n \rightarrow \mu^- + p$ 

O Cherenkov detectors can tell electron from muon

Time t in (227) can be determined from the distance between the detector and the source of neutrinos

# Atmospheric neutrino anomaly

Was first detected in 1980's: instead of predicted  $N(v_{\mu}) \approx 2N(v_e)$ , rates of both neutrinos were approximately equal

- Super-Kamiokande detector: measures rates and flavours of neutrinos coming both from zenith and nadir
  - A neutrino created in cosmic rays travels ~15 km in the atmosphere  $\Rightarrow$  has no time to oscillate (proven by other experiments)

  - If ratio of v<sub>e</sub> and v<sub>µ</sub> is different in two cases above  $\Rightarrow$  there are oscillations  $\Rightarrow$  at least one neutrino is massive.
- The detector is placed in a deep mine to reduce the background
- $-50\,000$  m<sup>3</sup> of water and 13 000 photomultipliers work as the Cherenkov detector



Figure 184: Neutrino oscillations through Earth seen by Super-Kamiokande



Figure 185: Schematics of the Super-Kamiokande detector



Figure 186: Interior of the Super-Kamiokande detector (April 2006, filling with water after full reconstruction)

In 1998, the Super-Kamiokande Collaboration announced:

a) 4654 observed events – by far the largest statistical sample back then (much more data collected now)

b) data exhibit zenith angle dependence of  $v_{\mu}$  deficit

- c) hence the "atmospheric neutrino anomaly" can only be explained by oscillations  $v_{\mu} \leftrightarrow v_{\tau}$ , which leads to muonic neutrino deficiency in cosmic rays.
- d) the  $v_2 \leftrightarrow v_3$  mixing angle and neutrino mass difference  $\Delta m$  from atmospheric neutrino studies are currently estimated at

$$\Theta_{23} = (45 \pm 7)^{\circ}$$
  
 $\Delta m^2 = 2.4 \times 10^{-3} eV^2$ 
(230)



Figure 187: Zenith angle distributions, Super-Kamiokande I

# Solar neutrino problem



Figure 188: "Portrait" of the Sun in neutrinos (by Super-Kamiokande)

Several methods are used to detect solar neutrinos of different energies:

$$v_e + {}^{37}\text{Cl} \rightarrow e^- + {}^{37}\text{Ar}$$
  
 $v_e + {}^{98}\text{Mo} \rightarrow e^- + {}^{98}\text{Tc}$   
 $v_e + {}^{71}\text{Ga} \rightarrow e^- + {}^{71}\text{Ge}$ 

Experimental installations typically are tanks filled with corresponding medium and placed underground



Homestake gold mine chlorine detector (data taking in 1969-1993, USA)

GALLEX detector under the Gran Sasso mountain (Italy), data taking in1991-1997

Figure 189: Layouts of first solar neutrino detectors

 $H_2O$ 

N<sub>2</sub>+ GeCl₄

GaCl<sub>3</sub> + HCl

(54 m<sup>3</sup>)

Solar neutrino flux is measured in SNU ("solar neutrino unit"):

- 1 SNU = 1 capture / 1 second /  $10^{36}$  target atoms
- "Solar neutrino problem" (SNP):
- For the Homestake detector, predicted neutrino flux is  $7.3 \pm 2.3$  SNU, measured  $2.6 \pm 0.2$  SNU
- $\clubsuit$  GALLEX: predicted 129  $\pm$  8 SNU, measured 77.5  $\pm$  8 SNU

Reactions producing solar neutrinos are:

1) 
$$p + p \rightarrow {}^{2}H + e^{+} + v_{e} \quad E_{v,max} = 0.42 \text{ MeV} (85\%)$$
  
2)  $e^{-} + {}^{7}Be \rightarrow {}^{7}Li + v_{e} \quad E_{v,max} = 0.86 \text{ MeV} (15\%)$   
3)  ${}^{8}B \rightarrow {}^{8}Be + e^{+} + v_{e} \quad E_{v,max} = 15 \text{ MeV} (0.02\%)$ 

GALLEX measures all of them, Homestake – only the last one.

Neutrino oscillations seemed to be the most appealing explanation, although there were many other hypotheses

# Sudbury Neutrino Observatory (SNO)

- A Cherenkov counter
- Used heavy water and could detect all three kinds of neutrinos
- Data taking from 1999 to 2006, upgrading to SNO+ now
- In 2001, produced the first evidence of <u>oscillations</u> in solar neutrinos, which effectively solved the SNP





Figure 190: Sudbury Neutrino Observatory layout (2km underground) SNO was measuring three kinds of neutrino-induced reactions:

- ◎ Electron scattering:  $v_x + e^- \rightarrow v_x + e^-$ , sensitive to all v, but dominated by  $v_e$

SNO neutral current flux measurement (all neutrino flavors):

$$\frac{\phi_{tot}^{measured}}{\phi_{tot}^{expected}} = 1.01 \pm 0.12$$

Charged current (only  $v_e$ ):

$$\frac{\phi_{ve}^{measured}}{\phi_{ve}^{expected}} = 0.35 \pm 0.02$$

This confirmed that the Solar model is correct, and there <u>are</u> neutrino oscillations



Figure 191: KamLAND detector (liquid scintillator, data taking since 2002) and the combined SNO and KamLAND (neutrinos from a reactor) fit



Figure 192: Electron antineutrino survival probability as measured by KamLAND. Antineutrinos from 26 reactors in the radius of 140-210 km are detected

# Long-baseline experiments

Accelerators can create high-intensity neutrino beams and direct them towards detector installations



Figure 193: Scheme of the CERN to Gran Sasso (732 km away) neutrino beam

- Oetector closer than 1km: short-baseline; NOMAD and CHORUS at CERN were 800 m away and found no signal
- Long-baseline: beam shot through Earth to a detector hundreds of kilometers away



Figure 194: NuMI beam of  $v_{\mu}$  is shot from Fermilab (IL) to the MINOS experiment in Soudan (MN) mine 735 km away. Takes data since 2005.

• Two detectors (near and far) are used in a disappearance experiment

#### New reactor experiments, focus on $\theta_{13}$ :



#### Appearance experiments

Appearance experiments are more challenging, but provide the necessary complementary measurements. Use either scintillators or Cherenkov detectors.

- OPERA in Gran Sasso, looks for appearance of tau neutrino in muon neutrino beam, takes data since 2006
- T2K Super-Kamiokande, appearance of electron neutrino in the beam (295 km from J-PARC), takes data since 2010





NOvA experiment - same basic setup as NuMI/ Soudan, but different detectors, ~2 degrees off the beam axis to enhance the signal (like T2K), appearance of electron neutrino. Should start taking data very soon now.

# **Extra-galactic neutrinos**

- Detection of neutrinos from supernovae can provide information about neutrino mass
- Simultaneous observation of neutrinos from the SN1987a on February 23, 1987 by two experiments (IMB and Kamiokande) set the upper limit of neutrino mass at 20 eV



Figure 195: SN1987a as seen by the Hubble Space Telescope in 1994



Figure 196: AMANDA (left, runs since 1996) and IceCube (right) neutrino telescopes at the South Pole. So far detected 28 candidates.

- Neutrino telescopes look for extra-Solar-system neutrinos and cover very large areas (1 cubic kilometre for IceCube)
- Located in (sometimes frozen) water bodies: lakes, seas and consist of strings of PEMs to detect Cherenkov light
- Some other neutrino telescopes:
  - Baikal (since 1993)
  - In Mediterranean: ANTARES (since 2006), NESTOR (since 2003)
  - Main KM3NeT to be constructed in Mediterranean, in 3 locations (prototype: NEMO)



# Is neutrino its own antiparticle?

- Can neutrino be its own antiparticle, violating lepton number conservation?
- Recap: neutrinos are always relativistic, hence left-handed (antineutrinos
- right-handed); moreover, antineutrinos have opposite sign of lepton quantum numbers
- Neutral particles may or may not have antiparticles:
  - (a)  $\gamma$ ,  $Z^0$ ,  $\pi^0$  have no antiparticles (all are bosons) (a)  $K^0$ , *n* have antiparticles (*n* is a fermion)
- Neutron is a *Dirac fermion* (has an antiparticle). *Majorana fermions* have no antiparticles, but never been observed yet.
- If neutrinos have mass, then right-handed neutrinos are possible:
  - **(a)** Dirac neutrino:  $v_L$ ,  $\overline{v}_R$  and  $v_R$ ,  $\overline{v}_L$
  - Majorana neutrino: only  $v_L$  and  $v_R$  and no lepton number conservation

The so-called "see-saw mechanism" combines Dirac and Majorana terms, leading to extremely light  $v_L$  and extremely heavy  $v_R$ 

 $\bigcirc$  May explain why  $v_L$  are so light

Majorana neutrino signature: neutrinoless double beta decay

Ouble beta decay requires even-even nuclei; only 35 isotopes known, all with half-lifes longer that the Universe age



Figure 197: Process (a) is allowed for both Dirac and Majorana neutrinos; process (b) - only for Majorana To detect a signal, one has to:

- Ohose a good isotope
- Know your background (as usual in neutrino experiments)
- Get a good detector



NEMO3 experiment is currently collecting data (in the Frejus road tunnel under Alps)

Planned experiments: SNO+, SuperNEMO, CUORE, KamLAND-Zen

ONO sign of Majorana neutrinos yet...

#### Summary of most recent neutrino oscillation parameters

| Parameter                          | <b>Best-fit value (</b> ±1σ <b>)</b> |
|------------------------------------|--------------------------------------|
| $\Delta m_{21}^2 \ [10^{-5} eV^2]$ | $7.54 \pm 0.26$                      |
| $ \Delta m^2  [10^{-3} eV^2]$      | $2.43 \pm 0.10$                      |
| $sin^2 \Theta_{12}$                | $0.307\pm0.018$                      |
| $sin^2 \theta_{23}$                | $0.386 \pm 0.024$                    |
| $sin^2 \theta_{13}$                | $0.0241 \pm 0.0025$                  |

Here  $\Delta m^2 = m_3^2 - (m_2^2 + m_1^2)/2$ 



Figure 198: Summary of current knowledge about neutrino mass and flavor eigenstates