FYST11 Lecture 12 BSM II

Thanks to G. Brooijmans, T. Rizzo, L. Covi

This week's topics

- Why go Beyond the SM?
 - What are the problems with the SM?
 - What direct measurements points to physics BSM
- Some attempts at solutions
 - Supersymmetry
 - Extended Higgs sector
 - Extra dimensions
 - A few others
- Searches for DM

Supersymmetry (SUSY)

Idea

New symmetry *fermions* \leftrightarrow *bosons*

This symmetry is the most general extension of Lorentz

invariance

SUSY has: N_{dof} (bosons) = N_{dof} (fermions) [cf. SM: N_{dof} (bosons) << N_{dof} (fermions)]

Spin 0	Spin 1/2	Spin 1	Spin 3/2	Spin 2
sLeptons	Leptons		Gravitino	Graviton
sQuarks	Quarks			
Higgs	Higgsino			
	Photino	Photon		
	Zino	Z		
	Wino	w		
	Gluino	Gluon		

- To create *supermultiplets*, we need to add one *superpartner* to each SM particle
- Superpartners have opposite spin statistics but otherwise equal quantum numbers
- Need to introduce an additional Higgs doublet to the non-SUSY side \Rightarrow 5 Higgs bosons

But where are these partners?! Supersymmetry must be broken (if realized)

Particle spectrum (minimal!)

In reality the new states would mix

Several ideas of how the supersymmetry is broken – intimately connected with EWK symmetry breaking

Squark/slepton mixing proportional to SM partner masses

- → largest for 3rd gen.
- → can become lightest squarks / sleptons

The gauge-mixed physical states that propagate in space and time and that can be observed. Neutralinos: mass eigenstates of photinos, zinos, neutral higgsinos Charginos : mass eigenstates of winos and charged higgsinos

Since we don't know the mechanism, have to introduce O(100) new parameters

SUSY and the hierachy problem

If Supersymmetry not broken we would have perfect cancellation in the loops!

But as $m(\tilde{t}) \neq m(t)$ they do not quite cancel, instead just a suppression

This still gives a decent result if

|m(fermion) - m(boson)| < O(TeV)

Once mass spectrum fixed, all cross sections predicted

Spin structure of SUSY spectrum: lower σ than other BSM models, harder to find !

Unification of coupling constants with supersymmetry

Proton Decay

(G. Giudice SSLP'15)

in GUT, matter is unstable

decay of proton mediated by new SU(5)/SO(10) gauge bosons

Characteristic SUSY Decay Cascades

- To avoid proton decay, a new conserved quantum number (R) is introduced, which forces a SUSY particle to decay in at least one other SUSY particle
- The lightest SUSY particle is thus stable (LSP), and must be neutral and colourless → WIMP (dark matter candidate)
- Typical LSP is spin-½ neutralino. It could also be a gravitino
- With R parity: SUSY production in pairs only → requires energy 2 × SUSY mass !

Canonical SUSY

Wide range of signatures

Strong production... (large cross-section)

... or weak production

RPV

Missing ET

"Evil" variable: - Σ (everything else)

- Need to understand "everything else"
- Good benchmark: leptonic W boson decays

Analyses using MET are particularly sensitive

- Requires the full calorimeter to behave, and calorimeter is generally the most sensitive subdetector (analog, ~16 bits)
- Easy: basic DQ (high voltage trip, etc.)
- Hard: low frequency
- Can't spot a 10⁻⁵ Hz (once a day) effect online or in first pass DQ
 - But can be biggest part of dataset after cuts!

Extended Higgs sector

In the Standard Model single Higgs doublet, often

written as
$$\begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix}$$
 or $\begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$

Extended: Many choices but a few constraints,

for instance suppression of FCNC and $\frac{M_W}{M_Z} = \cos \theta_W$

- Most successful: 2 Higgs doublet models (2HDMs)
 - Supersymmetry uses this
- See-saw models predict Higgs triplet with $arphi^0$, $arphi^{+/-}$, $arphi^{++/--}$

$$\begin{aligned} & \text{General 2HDM Potential} \\ & V(\phi_1, \phi_2) = \lambda_1 \left(|\phi_1|^2 - v_1^2 \right)^2 + \lambda_2 \left(|\phi_2|^2 - v_2^2 \right)^2 \\ & + \lambda_3 \Big[\left(|\phi_1|^2 - v_1^2 \right) + \left(|\phi_2|^2 - v_2^2 \right) \Big]^2 \\ & + \lambda_4 \Big[|\phi_1|^2 |\phi_2|^2 - \left(\phi_1^{*T} \phi_2 \right) \left(\phi_2^{*T} \phi_1 \right) \Big] & \text{All } \lambda \text{ are real.} \\ & + \lambda_5 \Big[\operatorname{Re} (\phi_1^{*T} \phi_2) - v_1 v_2 \cos \xi \Big]^2 \\ & + \lambda_6 \Big[\operatorname{Im} (\phi_1^{*T} \phi_2) - v_1 v_2 \sin \xi \Big]^2 & \text{From "Higgs Hunter's guide".} \end{aligned}$$

Higgs Boson Spectroscopy

One Charged Higgs with mass:

$$m_{H^{\pm}} = \sqrt{\lambda_4 (v_1^2 + v_2^2)}$$

One CP-odd neutral Higgs with mass:

$$m_{A^0} = \sqrt{\lambda_6 (v_1^2 + v_2^2)}$$

• And two CP-even higgs that mix.

$$M = \begin{pmatrix} 4v_1^2(\lambda_1 + \lambda_3) + v_2^2\lambda_5 & (4\lambda_3 + \lambda_5)v_1v_2 \\ (4\lambda_3 + \lambda_5)v_1v_2 & 4v_2^2(\lambda_2 + \lambda_3) + v_1^2\lambda_5 \end{pmatrix}$$

5 Higgs bosons! h, H, A, H^{\pm}

Examples of searches for extra Higgs bosons

Singly-charged

Doubly-charged

Limits around O(200 GeV)

Parity Restoration: Signals

- Primary signals are (right-handed) W' (+ Z')
 - Dilepton resonances (Z') offer clean signals, well-understood backgrounds
 - At LHC, some concern about extrapolation of calibration from Z to very high energies
 - Electron/muon resolution improves/degrades with pT
 - tt decays visible
 - v_R is presumably heavy, W' may not decay to leptons
 - Only dijet or diboson
 - If vR lighter than W'/Z', vR decays become important
- Note: many kinds of Z' review by Langacker
 - W'/Z' would also require new fermions...

Z' Production and Decay

- Production from u, d quarks is dominant at LHC
 - Couplings vary by model
 - E.g. for LR symmetric models, κ = g_R/g_L drives production cross-section (convolute with PDFs) and branching ratios
- Decays somewhat similar to Z (but almost no BR to light neutrinos, decays to top open up), plot assumes v_R heavier

- Most promising channels:
 - Backgrounds very low!
 - "Self-calibrating"
 - In ee, at high masses, energy resolution dominated by constant term
 - 10 GeV for 1.5 TeV electron
 - Could measure width!
- LHC extended Tevatron reach immediately!

Dijets

- SM background obviously much larger
 - But single source
 - And opens the door to strongly interacting objects

 $W' \rightarrow \mu \nu / e \nu$

Another very simple selection: lepton + MET

Extra Dimensions

- A promising approach to quantum gravity consists in adding extra space dimensions: string theory
 - Additional space dimensions are hidden, presumably because they are compactified

Radius of compactification usually assumed to be at the scale of gravity, i.e. 10¹⁸ GeV

- In '90 Antoniadis realized they may be much larger...

Phys.Lett B246:377.384 1990

ADD extra dimensions

- "Large extra dimension" scenario (developed by Arkani-Hamed, Dimopoulos and Dvali): https://doi.org/10909.263-272
 - Standard model fields are confined to a 3+1 dimensional subspace ("brane")
 - Gravity propagates in all dimensions
 - Gravity appears weak on the brane because only felt when graviton "goes through"

Drawing by K. Loureiro

ADD signatures

- Edges of extra dimensions identified
 - Boundary conditions
 - Momentum along extra dimension is quantized
 - Looks like mass to us
 - Very small separations → looks like continuum
 - Called Kaluza-Klein tower
- Coupling to single graviton very weak, but there are *lots* of them!
 - Large phase space → observable cross-section
 - Impacts all processes (graviton couples to energy-momentum)

- Consider processes that involve the bulk (i.e. gravitons)
 - Translational invariance is broken
 - Momentum is not conserved ...
 - ... because graviton disappears in bulk right away
- Look for p p → jet/photon + nothing (i.e. E_T), or deviations in high mass/angular behavior in standard model processes
 - Graviton has spin 2, couples to energy-momentum!

Warped extra dimensions

- Simple "Randall-Sundrum model:
 - SM confined to a brane, and gravity propagating in an extra dimension
 - As opposed to the original ADD scenario, the metric in the extra dimension is "warped" by a factor exp(-2kr_cφ)

Graviton excitations

In RS, get a few massive graviton excitations

- Widths depend on warp factor k
- Mass separation = zeros of Bessel function

Example

The infamous $\gamma\gamma$ bump is an example of a search for RS gravitons:

Gauge boson excitations

<u>N8040</u>

- Excitations of the gauge bosons are very promising channels for discovery
 - Couplings to light fermions are small
 - Small production crosssections
 - Large coupling to top, W_L,
 Z_L
 - Look for tt, WW, ZZ resonances (that can be wide)

B. Lillie et al., JHEP 0709:074,2007

(super)Strings

Avoid infinities from point-like particles Different vibration modes = different particles

One fundamental parameter: *string size*

Great idea but we have not yet understood how to test it at current "low" energies

Extra dimensions a must Supersymmetry a plus

Dark Matter Searches

Lots of models, this is not a unique search! Typically divided in two "classes":

<u>WIMP</u>: weakly interacting massive particle (\approx elementary particle)

<u>MACHO</u>: Massive Compact Halo Objects (planets, dwarf stars, something large)

The energy scale(s) of new physics

T. Tait, DM@LHC '14

The prediction about the mass scale of DM comes with large error bars:

(WIMPS) $10^{-22} \,\mathrm{eV} < m_{DM} < 10^{20} \,\mathrm{GeV}$ (MACHOs) (ALPs) (Wimpzillas, Q-balls) or even black holes ~10000 x M_{Sup}

Underground searches (experiments: DAMA, Xenon etc

WIMP scatters off nuclei Looking for annual modulation / DM "wind"

Cross section depends on exchange particle: Z exchange ruled out Now looking for H exchange

At the LHC

No Dark Matter interaction with the detector \Rightarrow signature is missing energy

Use initial state radiation (ISR) to detect it! (e.g jets, γ , W, Z, H)

Summary/outlook

- <u>Many</u> problems with current Standard model
- <u>Many</u> new models to take over Some important models not mentioned, for instance:
 - GUT models
 - Technicolor
 - Hidden valleys
- The LHC energy scale is tuned to be sensitive to many of these, complementary to other current searches
- Several potential signatures requires new "objects", ie lepton-jets, long-lived heavy particles, "quirks" etc
- Several good ideas but Nature decides which (if any) are true!