FYST17 Lecture 6 LHC Physics II

Today & Monday

- The LHC accelerator
- Challenges
- The experiments (mainly CMS and ATLAS)
- Important variables
- Preparations
- Soft physics
- EWK physics
- LHCb
- A few more recent results

Cross sections for different processes

First (and ever-present) physics at the LHC

Soft QCD

"Soft" refers to low p_T transfer, dominant in pp collisions. Often this is used as umbrella-name for everything not hard scattering:

soft-QCD affecting the high pT physics program at hadron colliders:

Pileup: LHC ~20 proton-proton interactions at the same time, they will almost always be soft-QCD processes

Multi Parton Interactions: An interesting parton-parton interaction will have many additional parton-parton interactions occurring in the same proton-proton interaction, they will almost always be soft-QCD processes

Therefore we had better have a good model of these processes! Can affect simulations of lepton ID, ETmiss resolution, jets, jet vetos,...

Dominant processes in inelastic hadron-hadron interactions :

Non-Diffractive

(ND) σ~49 mb

Single-Diffractive-Dissociation (SD) 0~14 mb

Double-Diffractive-Dissociation (DD) 0~9 mb @ 7 TeV

Multiple parton interactions

Pile-up

Due to the high number of protons/bunch high probability of multiple interactions Majority of these uninteresting – but difficult to disentangle from the "most" interesting hard scatter

CMS Experiment at LHC, CERM Data recorded: Mpn May 28-01:16:20/2012 CE9T RunEvent: 195099: 35488125 Cumi,section: 65 Oxbit/Crossing: 16992111 | 2295 LHC Bunch Crossing 1ns Clip

-0.12ns 0.4ns

0.11ns

0.15ns -0.05ns 0.2ns (define to be t=0)

Raw $\Sigma E_T \sim 2 \text{ TeV}$ 14 jets with $E_T > 40$ Estimated PU~50

$Z \rightarrow \mu\mu$ with 20 vertices

Underlying event

The hard scattering is not the only process, the proton is a composite object

Includes multi-parton interactions and beam remnants

- "Pollutes" the hard scattering process and influence precision measurement
- Normally much softer but large fluctuations
- Non-perturbative QCD so need to model this with empirical models tuned to data

Studying the underlying event

Jet events ideal for studying UE

- Tons of jet events at the LHC
- 'Transverse' region wrt direction of leading jet is very sensitive to the UE (c.f. CDF)

EPJ C 50, 435 (2007)

Minimum bias

Minimum bias adj. experimental term, to select events with the minimum possible requirements that ensure an inelastic collision occurred.

- Exact definition depends on detector (and analysis)
- Typically measure kinematics (multiplicity, pT and η spectra, etc) of charged particles in "minimum bias" events using central tracking detectors
- Monte Carlo parameters will be tuned to these distributions

Charged particles moving through a magnetic field will bend by an amount inversely proportional to pT

e.g. ATLAS: (a) At least two charged particles with pT > 100 MeV, $|\eta| < 2.5$ (most inclusive) (b) At least six charged particles with pT > 500 MeV, $|\eta| < 2.5$ (suppresses diffraction)

Testing the soft QCD predictions

High p_T / EWK physics

Physics Modelling

A2 Minbias tune (for PU) Pythia 6 and 8 (using 7 TeV ATLAS data only)

Top pair production

V+Jets, Dibosons, Tribosons Sherpa NLO (2partons) and LO (up to 4 partons) 2.1.1

Рт

🚥 Data

PYTHIA # A2

EPOS LHC

--- OGSJET 1-04

240

 $p_{\gamma}[\text{GeV}]$

PYTHIA 8 Monash

*ERMID++ UE-EED

Standard Model measurements

Close-in on the top quark

 $M_{top} = 173.34 \pm 0.36 \pm 0.67 \text{ GeV}$

Higgs measurements

PDG

Identification of jets and leptons

Jet algorithms

LO partons

NLO partons

parton shower

hadron level

How to define a "jet"? A few different approaches:

Cone algorimth: include all particles inside a cone of given radius

experimentally easiest , theoretically unsafe

k_T / anti- k_T algorithm

K_T jet Cone jet

- How likely that two partons arise from QCD
- splitting? From all final state particles calculate:

$$\begin{split} d_{ij} &= \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2, \\ d_{iB} &= p_{ti}^{2p}, \end{split}$$

 Find minimum. If d_{ij}, combine i and j into a jet, then loop over all particles again. If d_{iB}, call it a jet, and remove particle i from list

p=+1: k_T algorimth. p =-1: anti- k_T algorithm (favoring recombination of high-pt particles)

Comparison

Anti-kt mostly used at the LHC

Gives more regular jets (almost like cones!) because soft particles clustered only at the end

Amount of material in ATLAS and CMS inner trackers

Weight: 4.5 tons

Weight: 3.7 tons

- Active sensors and mechanics account each only for ~ 10% of material budget
- Need to bring 70 kW power into tracker and to remove similar amount of heat
- Very distributed set of heat sources and power-hungry electronics inside volume: this has led to complex layout of services, most of which were not at all understood at the time of the TDRs

Leptons and efficiencies

More on LHCb

Focus on B-physics, physics involving B hadrons Secondary vertex detector to identify potential B decays + particle ID

Physics programme mainly devoted to searches for rare decays + precision measurements to check loop effects and CP violation Despite being the "little brother", a lot of interesting results (interesting = tension with SM) have come from just LHCb

You'll remember the pentaquarks...

Results from the main area of expertise CP violation, for instance:

More on LHCb results

- Rare decays:
 - Only allowed through loops in the SM

Full q² range with J/ ψ and ψ (25) veto

 $B^0 \rightarrow K^{*0} \ \mu^+ \ \mu^-$

Heavy ion physics

Latest on the Standard Model: a few 13 TeV results

The Higgs @ 13 TeV ?

ATLAS doesn't really see it yet ... but still consistent with the old

√*s* [TeV]

Comparing to 8 TeV plots

4

2

80

90 100 110 120 130 140 150 160 170 m₄₁ [GeV]

CMS: Higgs @ 13 TeV ?

We don't know yet, result still "blinded"

They do expect less 3 σ , though (magnet trouble, less data than ATLAS) so we may not know the fate of the Higgs boson until later this year

Search for a Two Photons Resonance (II)

ATLAS results

Results: Events with mass in excess of 200 GeV are included in unbinned fit

- In the NWA search, an excess of 3.6σ (local) is observed at a mass hypothesis of minimal p₀ of 750 GeV
- Taking a LEE in a mass range (fixed before unblinding) of 200 GeV to 2.0 TeV the global significance of the excess is 2.0σ

In the NWA fit the resolution uncertainty is profiled in the NWA fit and is pulled by 1.5 or

The data was then fit under a LW hypothesis yielding a width of approximately 45 GeV (Approx. 6% of the best fit mass of approximately 750 GeV)

- As expected the local significance increases to 3.9σ
- Taking into account a LEE in mass and width of up to 10% of the mass hypothesis of 2.3σ (Note: upper range in resolution fixed after unblinding)

CMS

Taking into account the Lookelsewhere-effect this is only ~ 1.2 σ so could be coincidence

Sees a structure in the same place!

Summary

- The LHC is a fantastic multi-purpose machine
- It was not trivial to design and commission problems from previous accelerators do not necessarily scale
- Detectors have chosen fairly different techniques but sensitivity remains similar
 - Thousands of papers with results out
 - Apologies to ALICE you will hear more later
- The Standard Model , including the Higgs, is now well established
 - A few tensions and bumps but nothing really against the SM yet
 - This talk didn't really cover the Beyond Standard Model but we will get to that later