
FYST17 Lecture 9 
Statistical methods in Particle Physics 

Thanks to J. Morris, S. Menzemer 
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Outline 

• Systematic uncertainties 

– Definition, examples 

• The a2 mass  splitting measurement 

• ”Blind” analysis 

• Estimating efficiencies 

• Estimating backgrounds 
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Link:  

http://link.springer.com/book/10.1007/978-3-
319-15001-7 



What is a systematic uncertainty? 

All uncertainties that are not directly due to the 
statistics of the data. For instance:  

• Badly known backgrounds 

• Badly known detector resolutions 

• Wrong calibrations 

• Badly known acceptances or efficiencies 

• Preferred outcomes 

• External factors, such as theory uncertainties on 
cross sections etc 

• Other biases …. 
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Examples 

 



Examples 



Statistical (random) vs systematic 
uncertainties 

Example: 
 Mtop = 173.34 ± 0.36 ± 0.67 GeV 
More data will not help! 

Statistical Systematic 
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How are systematics estimated?! 
 

• No standard recipe! Some examples:  

• If amount of material important, check simulation with 
different amount of material 

• If efficiencies important, try varying nominal values with 1 
and see the effect 

– This is standard, test effect of changes in analysis procedure (for 
instance different fit window) 

• Compare data and simulation in general to see differences 

• Divide data up in periods with different conditions and 
compare  

• … 

• A bit of an art, actually 
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Example: systematic difference 
data to simulation 
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How to look for a particle 

1) Look in high-energy collisions for events with multiple output 
particles that could be decay products.  

   (for instance, K0  +-, displaced vertex) 

2)   Reconstruct invariant mass from assumed decay products 

3)   Make a histogram of the  

      masses 

4)   Look for a peak indicating a  

      state of well-defined mass 



Example 8.4 
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PDG history plots! 
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Reducing systematics? 

• Easier once you have first estimate  

– which sources are important and which negligible 

– More knowledge means more precise estimates 

• Take advantage of measurements where 
certain systematics cancel out 

– Measure ratios and differences 

• Design analysis in more unbiased way  

– ”blind” analysis 
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”Blind” analysis 

Simply put, avoid looking at a potential signal (in data) 
as long as possible, to minimize biases 

Most analyses are performed this way  
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Example: b observation CDF 
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Estimations directly from data 

To reduce systematics from data/ simulation 
differences, some estimates (or additional weights 
applied to MC) are taken directly from data (”data-
driven”) 

 

Two examples much in use:  

• Efficiencies 

• Multi-jet background 
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Tag and probe 
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Tag and probe 
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Of course this only works when the quantities under 
study are not correlated between the two electrons!!! 
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Data-driven background estimation 

In some cases unrealistic to simulate the background  

– For instance multijet production faking leptons 

– Low probability but (pp  jets) >> (EWK  leptons) 

– Would need HUGE MC samples and understand all details 
in detector + hadronization with precision 

Thus, for these often use data-driven methods instead. 
Some standard methods: 

– ”ABCD” methods 

– Matrix method 

– Fake factor method 

24 



ABCD method 
• Two uncorrelated variables for each channel divided up into 4 

regions in that parameter space 

Region A = Signal concentrated region 

Regions B, C, D = background concentrated regions (control 
regions) 

Amount of QCD bkg due to hadronic  

jets in A can be estimated as:  

 NA= 
NB×NC

ND
 

In realistic cases (with signal also in  

B, C;,D) use a likelihood to estimate  

relative rates in the 4 regions.  



Example from the lepton-jets 
search (arXiv 1511.05542)  

Recently published search for dark photons, dark 
fermions. Model to explain PAMELA positron excess 

Signal ”polution” exists, thus a  

likelihood fit used. Performance: 
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QCD predicted 



Matrix method 
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Built from two rates: 

The real rate: probability that a real lepton identified as a loose lepton gets 

identified as a tight lepton 

The fake rate: probability that a real jet identified as a loose leptons is 
identified as tight lepton 

Single lepton selection: the # of loose and tight leptons can be 
written as:   NL = NR+ NF;    N

T= εRNR + εFNF 

Where ’s are the fraction of events that pass from loose to tight 

These are measured in control data samples, depends on 
kinematics and jet type 

In the end results in weights given to each event:  

𝑤 = 
𝜀𝐹𝜀𝑅

𝜀𝑅  − 𝜀𝐹
 if it fails loose cuts and 

𝜀𝐹

𝜀𝑅−𝜀𝐹
(𝜀𝑅  − 1) otherwise 

L        L                             L                 L 



The matrix method 
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The matrix when selecting events with two leptons::  

Estimated background  given by event weight: wTT = r1f2 wRF  + f1 r2 wFR  + f1f2wFF  



Fake factors 
Define data control region inverting some selection criteria, then 

extrapolate this into signal region:  𝑓 ≡
𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝐴𝑛𝑡𝑖−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
  where 

f= function(pT , ) 

Example with two 

muons:   

Nmultijet  = 𝑓 𝜇 +
𝑁(𝐴+𝑆)
𝑖=1  
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 𝑓 𝜇 + 
𝑁(𝑆+𝐴)

𝑖=1
  𝑓(𝜇)
𝑁(𝐴+𝐴)

𝑖=1
 

Needs independent sample for measuring f, as well as corrections 
for other backgrounds 



Pros and cons 
• ABCD method 

– Simple, if applicable 

– Hard to find the best, uncorrelated variables, and to test validity of 
method in advance 

• Matrix method:  

– Precise, in theory 

– In reality, lots of efficiencies to be measured – i.e. potentially 
correlated or large uncertainties 

– Overlaps between different types of backgrounds hard to distinguish 

• Fake factors 

– ”simplified” matrix method  

–  Some precision lost 

– How to define appropriate control regions 

 
30 



Background estimation cont. 

• Optimal strategy depends on the specific analysis!  

– Simulation or data-driven, or a combination? 

– Which data-driven method 

 

• More methods than shown here (for instance 
template method often used) and variations over the 
”standard” methods 

• In some cases we use more than one method – very 
useful to get a real estimate of systematic 
uncertainties in either methods  

– (but of course time consuming) 
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Summary 

• Systematic uncertainties important – can be your 
dominant source of uncertainty! 

• Hard to estimate – no recipe 

– Nevertheless we do have some go-to procedures 

– Self critical attitude (paranoia?!) can help uncover hidden 
systematics 

• To decrease potential biases, most analyses are 
performed as ”blind” analyses 

• Statistical methods come in different disguises 

– Efficiencies and background estimates are sources of 
systematic uncertainties 
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