FYST11 Lecture 12 BSM II

Thanks to G. Brooijmans, T. Rizzo, L. Covi, M. Maggiore

Lab exercise

Remember

March 2: working in groups March 6: presenting March 8: computer exercise

Wednesday March 8 we will meet in H321.

I will soon (?) get a list of people with accounts there from this course, will let you know

If you already have account on those machines but forgot username/pw, send an email to kurslab_admin@fysik.lu.se

Today & Monday

- Why go Beyond the SM?
 - What are the problems with the SM?
 - What direct measurements points to physics BSM
- Some attempts at solutions
 - Supersymmetry
 - Extended Higgs sector
 - Extra dimensions
 - A few others
- Searches for DM, gravitational waves

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016

Status: August 2016 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8$										\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[ft	D ⁻¹]	Limit	Ū		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD QBH} \\ \text{ADD BH high } \sum_{PT} \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \to \ell \ell \\ \text{RS1 } G_{KK} \to \ell \ell \\ \text{RS1 } G_{KK} \to WW \to qq\ell\nu \\ \text{Bulk } \text{RS } G_{KK} \to WH \to bbbb \\ \text{Bulk } \text{RS } g_{KK} \to tt \\ \text{2UED } / \text{RPP} \end{array}$		$\geq 1 j$ $-$ $1 j$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $-$ $1 J$ $4 b$ $\geq 1 b, \geq 1 J/2$ $\geq 2 b, \geq 4 j$	Yes 	3.2 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	Mp Ms Mth Mth Mth GKK mass GKK mass GKK mass GKK mass KK mass KK mass	4.7 5. 2.68 TeV 3.2 TeV 3.2 TeV 360-860 GeV 2.2 TeV 1.46 TeV	6.58 TeV TeV 2 TeV 8.7 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2\\ n=3 \ \text{HLZ}\\ n=6\\ n=6\\ n=6, \ M_D=3 \ \text{TeV}, \ \text{rot} \ \text{BH}\\ n=6, \ M_D=3 \ \text{TeV}, \ \text{rot} \ \text{BH}\\ k/\overline{M}_{P^I}=0.1\\ k/\overline{M}_{P^I}=0.1\\ k/\overline{M}_{P^I}=1.0\\ \text{BR}=0.925\\ \text{Tier} (1,1), \ \text{BR}(A^{(1,1)} \rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{HVT}\; W' \to WZ \to qqv\nu \ \mathrm{model} \\ \mathrm{HVT}\; W' \to WZ \to qqqq \ \mathrm{mode} \\ \mathrm{HVT}\; V' \to WH/ZH \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM}\; W'_R \to tb \\ \mathrm{LRSM}\; W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ A 0 \ e, \mu \\ B - \\ multi-channe \\ 1 \ e, \mu \\ 0 \ e, \mu \end{array}$	- 2 b - 1 J 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass Z' mass Z' mass W' mass W' mass V' mass W' mass W' mass	4.05 TeV 2.02 TeV 1.5 TeV 4.74 2.4 TeV 3.0 TeV 2.31 TeV 1.92 TeV 1.76 TeV	V TeV	$g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-065 ATLAS-CONF-2016-055 1607.05621 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e,μ 2(SS)/≥3 e,μ	2 j _ µ ≥1 b, ≥1 j	_ _ Yes	15.7 3.2 20.3	Λ Λ Λ	4.9	TeV	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
MD	Axial-vector mediator (Dirac DM Axial-vector mediator (Dirac DM $ZZ_{\chi\chi}$ EFT (Dirac DM)	l) 0 e, μ l) 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	m _A m _A M _*	1.0 TeV 710 GeV 550 GeV		$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi)<250~{\rm GeV}\\ g_q{=}0.25,g_\chi{=}1.0,m(\chi)<150~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	_ _ Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 TeV 1.05 TeV 640 GeV		$egin{array}{ll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array} \end{array}$	1605.06035 1605.06035 1508.04735
quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ VLQ \ T_{5/3} \ T_{5/3} \rightarrow WtWt \end{array} $	$1 e, \mu 1 e, \mu 1 e, \mu 2/≥3 e, \mu 1 e, \mu 2(SS)/≥3 e, \mu$		j Yes j Yes j Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 990 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1γ $-$ $-$ $1 \text{ or } 2 e, \mu$ $3 e, \mu$ $3 e, \mu, \tau$	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q* mass g* mass b* mass d* mass v* mass	4.4 T 2.3 TeV 1.5 TeV 3.0 TeV 1.6 TeV	eV 5.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$ \frac{1 \ e, \mu, 1 \ \gamma}{2 \ e, \mu} \\ 2 \ e \ (SS) \\ 3 \ e, \mu, \tau \\ 1 \ e, \mu \\ - \\ - \\ \sqrt{s} = 8 \ TeV $	_ 2 j _ 1 b _ _ _	Yes Yes 3 TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	aT mass N ⁰ mass H ^{±±} mass H ^{±±} mass spin-1 invisible particle mass multi-charged particle mass monopole mass	960 GeV 2.0 TeV 570 GeV 400 GeV 5657 GeV 785 GeV 1.34 TeV		$m(W_R) = 2.4$ TeV, no mixing DY production, BR($H_L^{\pm\pm} \rightarrow ee$)=1 DY production, BR($H_L^{\pm\pm} \rightarrow t\tau$)=1 $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059
						10-1	1	10	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Preliminary

Parity Restoration: Signals

- Primary signals are (right-handed) W' (+ Z')
 - Dilepton resonances (Z') offer clean signals, well-understood backgrounds
 - At LHC, some concern about extrapolation of calibration from Z to very high energies
 - Electron/muon resolution improves/degrades with pT
 - tt decays visible
 - v_R is presumably heavy, W' may not decay to leptons
 - Only dijet or diboson
 - If v_R lighter than W'/Z', v_R decays become important
- Note: many kinds of Z' review by Langacker
 - W'/Z' would also require new fermions...

Z' Production and Decay

- Production from u, d quarks is dominant at LHC
 - Couplings vary by model
 - E.g. for LR symmetric models,
 κ = g_R/g_L drives production
 cross-section (convolute with
 PDFs) and branching ratios
- Decays somewhat similar to Z (but almost no BR to light neutrinos, decays to top open up), plot assumes v_R heavier

- Most promising channels:
 - Backgrounds very low!
 - "Self-calibrating"
 - In ee, at high masses, energy resolution dominated by constant term
 - 10 GeV for 1.5 TeV electron
 - Could measure width!
- LHC extended Tevatron reach immediately!

Dijets

- SM background obviously much larger
 - But single source
 - And opens the door to strongly interacting objects

$W' \rightarrow \mu \nu / e \nu$

Another very simple selection: lepton + MET

Extra Dimensions

- A promising approach to quantum gravity consists in adding extra space dimensions: string theory
 - Additional space dimensions are hidden, presumably because they are compactified

Radius of compactification usually assumed to be at the scale of gravity, i.e. 10¹⁸ GeV

- In '90 Antoniadis realized they may be much larger...

ADD extra dimensions

- "Large extra dimension" scenario (developed by Arkani-Hamed, Dimopoulos and Dvali): https://doi.org/10909.263-272
 - Standard model fields are confined to a 3+1 dimensional subspace ("brane")
 - Gravity propagates in all dimensions
 - Gravity appears weak on the brane because only felt when graviton "goes through"

Drawing by K. Loureiro

ADD signatures

- Edges of extra dimensions identified
 - Boundary conditions
 - Momentum along extra dimension is quantized
 - Looks like mass to us
 - Very small separations → looks like continuum
 - Called Kaluza-Klein tower
- Coupling to single graviton very weak, but there are *lots* of them!
 - Large phase space → observable cross-section
 - Impacts all processes (graviton couples to energy-momentum)

- Consider processes that involve the bulk (i.e. gravitons)
 - Translational invariance is broken
 - Momentum is not conserved ...
 - ... because graviton disappears in bulk right away
- Look for p p → jet/photon + nothing (i.e. E_T), or deviations in high mass/angular behavior in standard model processes
 - Graviton has spin 2, couples to energy-momentum!

Warped extra dimensions

- Simple "Randall-Sundrum model:
 - SM confined to a brane, and gravity propagating in an extra dimension
 - As opposed to the original ADD scenario, the metric in the extra dimension is "warped" by a factor exp(-2kr_cφ)

Graviton excitations

In RS, get a few massive graviton excitations

- Widths depend on warp factor k
- Mass separation = zeros of Bessel function

Example

The infamous $\gamma\gamma$ bump is an example of a search for RS gravitons:

Gauge boson excitations

- Excitations of the gauge bosons are very promising channels for discovery
 - Couplings to light fermions are small
 - Small production crosssections
 - Large coupling to top, W_L,
 Z_L
 - Look for tt, WW, ZZ resonances (that can be wide)

(super)Strings

Avoid infinities from point-like particles Different vibration modes = different particles

One fundamental parameter: *string size*

Great idea but we have not yet understood how to test it at current "low" energies

Extra dimensions a must Supersymmetry a plus

A hidden ("dark") sector?

Rather than being heavy, could new particles be light but *very* weakly interacting?

e.g. new, light "hidden sector" of particles which are singlets wrt gauge group of the SM

- Several possibilities for renormalisable singlet operators which each involve some hidden sector particle mixing with some SM "portal particle":
 - Vector portal new U(1) B_{mn} massive vector photon (paraphoton, secluded photon...) mixing with regular photon $\rightarrow eB_{mn}F^{mn}$
 - Higgs portal new scalar field
 - Axial portal new axial-vector field a Axion Like Particles (to distinguish from Peccei–Quinn axion)
 - Neutrino portal new heavy neutral leptons (HNL) \rightarrow YH^TN[']L
- E.g. The neutrino Minimal Standard Model (nMSM) aims to explain :
 - Matter anti-matter asymmetry in the Universe, neutrino masses and oscillations, non-baryonic dark matter

by adding three right-handed, Majorana, Heavy Neutral Leptons $$\rm (HNL)$, N_1, N_2 and $N_3$$

The Neutrino Portal

- The neutrino Minimal Standard Model (vMSM) [T.Asaka, M.Shaposhnikov, Phys. Lett B620 (2005) 17] aims to explain
 - Matter anti-matter asymmetry in the Universe, neutrino masses and oscillations, non-baryonic dark matter

by adding three right-handed, Majorana, Heavy Neutral Leptons (HNL), $N_1,\,N_2$ and N_3

- N₁ mass in keV region, (warm) dark matter candidate
- N_{2,3} mass in 100MeV GeV region generate neutrino masses via see-saw mech. and produce baryon asymmetry of the Universe

Dark Matter Searches

Lots of models, this is not a unique search! Typically divided in two "classes":

<u>WIMP</u>: weakly interacting massive particle (elementary particle)

<u>MACHO</u>: Massive Compact Halo Objects (planets, dwarf stars, something large)

The energy scale(s) of new physics

T. Tait, DM@LHC '14

The prediction about the mass scale of DM comes with large error bars:

(WIMPS) $10^{-22} \,\mathrm{eV} < m_{DM} < 10^{20} \,\mathrm{GeV}$ (MACHOs) (ALPs) (Wimpzillas, Q-balls) or even black holes ~10000 x M_{Sup}

Underground searches (experiments: DAMA, Xenon etc

WIMP scatters off nuclei Looking for annual modulation / DM "wind"

Cross section depends on exchange particle: Z exchange ruled out Now looking for H exchange

At the LHC

No Dark Matter interaction with the detector \Rightarrow signature is missing energy

Use initial state radiation (ISR) to detect it! (e.g jets, γ , W, Z, H)

Gravitation

The basic intuitive picture:

More formally:

Flat space: $ds^2 = -c^2 dt^2 + d\mathbf{x}^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ $\eta_{\mu\nu} = (-1, 1, 1, 1)$ Curved space $ds^2 = g_{\mu\nu}(x) dx^{\mu} dx^{\nu}$ Einstein eqs. $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

cultinada

Gravitational waves

Black holes merging

GWs: intuitively

More formally:

$$g_{\mu\nu}(x) = \eta_{\mu\nu} + \frac{h_{\mu\nu}(x)}{h_{\mu\nu}(x)}$$

in vacuum,

 $h_{ij}^{\mathrm{TT}} = \left(\begin{array}{ccc} h_+ & h_\times & 0\\ h_\times & -h_+ & 0\\ 0 & 0 & 0 \end{array}\right)$

$$-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \boldsymbol{\nabla}^2 \Big] h_{ij}^{\mathrm{TT}} = 0$$

GWs come in two polarization states, h_+ and h_{\times}

and carry energy away from the system

In fact we already observed gravitational waves before

Hulse-Taylor binary pulsar

NS-NS binary a NS observed as pulsar $(P \simeq 59 \text{ ms})$

discovered 1974

Pulsars are clocks with exceptional intrinsic stability (comparable to atomic clocks)

Timing residuals affected by various effects due to GR (e.g. Roemer, Einstein and Shapiro time delays)

Detecting gravitational waves

Direct GW detection aims at opening a new window in astrophysics and cosmology

This has been made possible by 40+ years of work, including

- Experimental 'miracles'

the event detected by LIGO has $h_{\text{max}} \simeq 1 \times 10^{-21}$ $\frac{\Delta L}{L} = (1/2)h, \quad L = 4 \text{ km} \quad \Rightarrow \quad \Delta L = 2 \times 10^{-3} \text{ fm !!!}$

 Theoretical breakthroughs predicting the waveform for BH-BH coalescence How can we possibly measure $\Delta L = 10^{-3}$ fm???

LIGO Livingston inferometer

- laser beam size ~ 12 cm. Even if $\Delta L = 10^{-3}$ fm, we measure a coherent displacement of all atoms in the mirror! A better figure is given by the phase shift in the interferometer,

 $\Delta \phi = \frac{4\pi \mathcal{F}}{\lambda_L} h_0 L \sim 10^{-8} \text{ rad}$

- does not detect a mirror motion x(t) but $\tilde{x}(f)$ in a selected range of frequencies ~ 10 Hz - 3kHz. We are only sensitive to GW frequencies in this range

What does a BH merger look like?

Accurate predictions of the waveform are crucial for

- extracting the signal from the noise
- perform parameter estimation, i.e. extracting the physics from the event

Three phases: inspiral-merger-ringdown

Thanks to decades of theoretical work, the waveform is fully under control

First observation Sept. 2016

parameter estimation from matched filtering:

$36^{+5}_{-4} M_{\odot}$
$29^{+4}_{-4} M_{\odot}$
$62^{+4}_{-4} M_{\odot}$
$0.67^{+0.05}_{-0.07}$
410^{+160}_{-180} Mpc
$0.09^{+0.03}_{-0.04}$

Abbott et al, PRL 116, 061102 (2016)

A second detection on Dec. 26, 2015

Why is this important?

First direct detection of GWs. But especially a new window that opens:

– Direct proof that 'heavy' ($M \gtrsim 25 M_{\odot}$) stellar-mass BH exists

22 BH in X-ray binaries have reliably measured mass. Mostly $M = (5 - 10)M_{\odot}$, some have $M = (10 - 20)M_{\odot}$. We have found two BH with M = 29 and $36 M_{\odot}$ and we have assisted at the birth of a BH with $62M_{\odot}$.

- First observation of a BH-BH binary
- BH-BH binaries merge within the age of the Universe, at a detectable rate

Tests of General Relativity Mass limits on (massive) gravitons:

$$\lambda_g = h/(m_g c)$$

 $\lambda_g > 10^{13} \text{ km} \qquad (m_g < 1.2 \times 10^{-22} \text{ eV}/c^2)$

Summary/outlook

- <u>Many</u> problems with current Standard model
- <u>Many</u> new models to take over Some important models not mentioned, for instance:
 - GUT models
 - Technicolor
 - Hidden valleys
- The LHC energy scale is tuned to be sensitive to many of these, complementary to other current searches
- Several potential signatures requires new "objects", ie lepton-jets, long-lived heavy particles, "quirks" etc
- Several good ideas but Nature decides which (if any) are true!