FYST17 Lecture 5 LHC Physics 1

Thanks to A. Hoecker, V. Hedberg

Today & Monday

- The LHC accelerator
- Challenges
- The experiments (mainly CMS and ATLAS)
- More on important variables
- Preparations
- Soft physics
- EWK physics
- LHCb
- A few more recent results

The LHC Physics Programme

- 1. Mass
 - Search for the Higgs Boson, measurement of its properties
- 2. Electroweak unification and strong interactions
 - Precision measurements (M_W , m_{top}) and tests of the Standard Model
 - Tests of perturbative QCD at the highest energy scales
- 3. Hierarchy in the TeV domain
 - Search for new phenomena moderating the hierarchy problem
- 4. Flavour
 - *B* mixing, rare decays and *CP* violation as tests of the Standard Model

Motivation behind the Large Hadron Collider

Advantage of hadron collider

Can reach higher energies in ring (less synchrotron radiation)

Energy loss per turn:

 $-\Delta E \approx \frac{4\pi\alpha}{3 \cdot R} \left(\frac{E}{m}\right)^4 \approx \begin{cases} 3.5 \text{ GeV for LEP-II at } E_{\text{beam}} = 104.5 \text{ GeV} \\ 6.2 \text{ keV for LHC at } E_{\text{beam}} = 7000 \text{ GeV} \end{cases}$

Disadvantages

- Hadrons are composites \rightarrow parasitic collisions beyond hard parton scattering
- Energy and type of colliding parton unknown → kinematics partially unconstrained

Driving the SM to the Planck Scale: Or why we expected the Higgs boson to be discovered at the LHC

Perturbativity and (meta)stability bounds versus the SM cut-off scale Λ

Figure uses NLO Higgs potential. The widths of bands account for errors in $\alpha_{\rm S}$, m_t and theory.

The SM Higgs must steer a narrow course between two disastrous situations if it is to survive up to the Planck scale $M_P \simeq 2 \times 10^{18}$ GeV

The accelerator

Linac

PS

SPS

LHC

Booster

Cross section of dipole magnet

The LHC has > 10000 connections between magnets

Weight (magnet + cryostat) ~ 30 tons, Length 15 m

The LHC environment

- The search for new phenomena exploits ever smaller distances ⇒ ever larger energies
- The LHC collides protons at $E_{CM} = 13 \text{ TeV} \rightarrow \text{probing a distance of } 1 \times 10^{-18} \text{ cm}$? ... not quite, since protons are composites: the energy is distributed among its partons

LHC data handling, GRID computing

Balloon (30 Km)

> CD stack with 1 year LHC data! (~ 20 Km)

Concorde (15 Km)

> Mt. Blanc (4.8 Km)

How to Select Interesting Events?

- Bunch crossing rate: 40 MHz, ~20 interactions per BX (10⁹ evts/s)
 - can only record ~200 event/s (1.5 MB each), still 300 MB/s data rate
- Need highly efficient and highly selective TRIGGER
 - raw event data (70 TB/s) are stored in pipeline until trigger decision

- ATLAS trigger has 3 levels (CMS similar with 2 levels)
 - Level-1: hardware, ~3 µs decision time, 40 MHz → 100 kHz
 - → Level-2: software, ~40 ms decision time, 100 kHz → 2 kHz
 - Level-3: software, ~4 s decision time, 2 kHz → 200 Hz

Repeat: Trigger efficiency

Requirements from Physics Programme

Requirements from LHC Conditions

LHC and data conditions:	Design challenges:
 40 MHz bunch crossing rate (25ns = 7.5m bunch spacing) 	Fast trigger, precise timing and "pipeline" electronics: Level-1 latency < 2.5µs
 ~1 GHz interaction rate at L = 10³⁴ cm⁻²s⁻¹ (~25 ias. per bunch crossing) 	Efficient pattern recognition to reduce: GHz @ L1 \rightarrow 75 kHz @ HLT \rightarrow 200 Hz to disk
◆ ~300 Mbytes/seconds data rate (200 Hz \Rightarrow O(1.5 MB/event))	Powerful data processing farms : distribute data analysis to computing centres worldwide
 Irradiation rate / 10 LHC years: 5x10¹⁴ n_{eq}/cm² (300 kGray [= J/kg]) 	Radiation hard inner tracker (pixel with large <i>S/B</i>) and forward calorimeter technology
 High charged multiplicity (O(1000) tracks per event, 10¹² / sec) 	High-granular pixel/silicon or fine-grained straw tracker technologies
 High background rates (beam halo muons, neutrons, beam-gas collisions) 	Precise muon timing , redundant pattern recognition, radiation hardness

A large Toroidal Lhc ApparatuS

ATLAS

ALICE + LHCb

20

From the construction of ATLAS

From the installation of CMS

LHCb + ALICE

LHCb magnet

Graduate student Tuva pulling cables for ALICE

ATLAS & CMS: Design & Performance Overview

	ATLAS (7 ktons)	CMS (12.5 ktons)
INNER TRACKER	 Silicon pixels + strips TRT with particle identification B = 2 T σ(p_T) ~ 3.8% (at 100 GeV, η = 0) 	 Silicon pixels + strips No dedicated particle identification B = 3.8 T σ(p_T) ~ 1.5% (at 100 GeV, η = 0)
MAGNETS	 4 Magnets Solenoid + Air-core muon toroids Calorimeters outside solenoid field 	 1 Magnet Solenoid Calorimeters inside field
EM CALORIMETER	• Pb / Liquid Ar sampling accordion • $\sigma(E) \sim 10-12\% / \sqrt{E} \oplus 0.2-0.35\%$ • Longitudinal segmentation • Saturation at ~ 3 TeV	• PbWO ₄ scintillation crystals • $\sigma(E) \sim 3-5.5\% / \sqrt{E} \oplus 0.5\%$ • No longitudinal segmentation • Saturation at 1.7 TeV
HAD CALORIMETER	 Fe / Scint. tiles (EC: Cu-liquid Ar) σ(E) ~ 45% / √E ⊕ 1.3% (Barrel) 	 Cu (EC: brass) / Scint. tiles Tail catchers outside solenoid σ(E) ~ 100% / √E ⊕ 8% (Barrel)
MUON	• Drift tubes & CSC (fwd) + RPC/TGC • $\sigma(p_T) \sim 10.5\% / 10.4\%$ (1 TeV, $\eta = 0$) (standalone / combined with tracker)	• Drift tubes & CSC (EC) + RPC • $\sigma(p_T) \sim 13\% / 4.5\%$ (1 TeV, $\eta = 0$) (standalone / combined with tracker)

Luminosity – single most important quantity !

• Luminosity is purely a function of the LHC beam parameters (formula similar to luminosity of stars)

$$L = \frac{f_{\text{rev}} n_{\text{bunch}} N_{p,1} N_{p,2}}{A} = \frac{f_{\text{rev}} n_{\text{bunch}} N_{p,1} N_{p,2}}{4\pi\sigma_x \sigma_y} \qquad [L] = \frac{1}{\text{s} \cdot \text{cm}^2}$$

- f_{rev} = 11245.5 Hz is the bunch revolution frequency
- $n_{\text{bunch}} = 1...2808$ is the number of bunches in the machine
- $N_{p,1/2} = 1.1 \times 10^{11}$ is the number of protons in each beam
- $\sigma_{x/y} = 16...50 \ \mu m$ is the Gaussian transverse beam width
- $L_{\rm max} = 1.3 \times 10^{34} \, {\rm s}^{-1} {\rm cm}^{-2}$
- Luminosity determines the rate of physics processes by unit time and hence drives our ability to detect new processes

 $N_{\rm obs} = {\rm cross \ section} \times {\rm efficiency} \times \int L \cdot dt$

"Cross section" given by Nature

"Efficiency" of detection optimised by experimentalist

Recorded Luminosity

Measured with forward detectors, calibrated with beam separation scans

Difference between del. and rec. luminosity from trigger deadtime and detector inefficiency

 $10^{32} \text{ cm}^{-2}\text{s}^{-1}$ instantaneous luminosity corresponds to an integrated luminosity of 0.1 nb⁻¹ per second \Rightarrow 180 pb⁻¹ per month (assuming 70% LHC efficiency for physics)

Schedule (preliminary)

LHC roadmap: according to MTP 2016-2020 V1

CERN

Frederick Bordry to the SPC

An array of aluminum tubes filled with C_4F_{10} gas acts as Cherenkov counters.

The **Cherenkov light** is produced with a 3° angle and makes typically 3 reflections while passing down the tube.

The **Cherenkov threshold** (10 MeV for elec. and 2.8 GeV for pions) and the pointing of the tubes supresses background.

No Landau fluctuations makes it easier to count several particles going through the same tube.

A good time resolution makes it possible to study individual beam crossings.

V. Hedberg

The rate of the pp interactions (R_{pp}) seen by LUCID is proportional to the luminosity (*L*): $R_{pp} = \mu_{LUCID} \cdot f_{BX} = \sigma_{pp} \cdot \varepsilon_{LUCID} \cdot L$ Bunch crossing rate = $\frac{2808}{3564} \times \frac{40}{504} \text{ Mhz}$ Efficiency (and acceptance) of LUCID to detect a pp interaction (~21% for single sided detection and ~5% for detection on both the A and C side).

Zero Counting

Count bunch crossings with no interactions:

Hit Counting

Count the number of tubes with a signal (hit):

Particle Counting

Count the number of particles in LUCID by doing several cuts on the pulseheight distributions:

$$\begin{aligned} \mu_{\text{LUCID}} &= -\ln\left(\frac{N_{zeroBX}}{N_{totalBX}}\right) \\ \mu_{\text{LUCID}} &= \frac{}{} \\ \mu_{\text{LUCID}} &= \frac{}{} \end{aligned}$$

/ M

Cross sections at a hadron collider

- For proton collisions, cross section is convolution of Parton Density Functions (PDF) with parton scattering Matrix Element
- For inclusive processes and at short distance, $\sigma(pp \rightarrow X)$ can be computed in pQCD with factorization theorem, separating hard scattering and PDFs

• Large α_s requires (complicated) higher order calculations

p-p event is superposition of: hard subprocess (matrix element) + initial and final state radiation, multiple parton–parton interactions with additional radiation

Kinematic of Proton Collisions

- Proton is complicated composite of valence quarks, gluons and sea quarks
- PDF depends on 2D mixture of
 - Q^2 (evolution in $\ln(Q^2)$ predicted by QCD)
 - Bjorken x momentum fraction
- CM energy of parton collision: $\hat{s} = M_X^2 = x_1 \cdot x_2 \cdot s_{LHC}$
- Typical 'x' values (assume: $x_1 = x_2$)

LHC (Vs = 14 TeV):

- $M_X = 100 \text{ GeV} (1 \text{ TeV}) \implies \langle x \rangle = 0.007 (0.07)$ Tevatron ($\sqrt{s} = 2 \text{ TeV}$):

- $M_{\chi} = 100 \text{ GeV} (1 \text{ TeV}) \implies \langle x \rangle = 0.05$ (0.5)
- PDFs rise dramatically towards low x
 - \Rightarrow larger cross sections at LHC
 - \Rightarrow gluon dominated

The LHC is a gluon collider!

MSTW 2008 NNLO PDFs (68% C.L.)

Kinematic Constraints and Variables

- Transverse momentum and missing transverse energy: $p_{p} E_{T,miss}$
 - Particles escaping detection have low p_T
 - Visible transverse momentum conserved: $\sum_{r=1}^{l} p_{\tau_{i}} \approx 0$ useful variable !
 - Large $E_{T,miss}$ indicates invisible particle (ie, neutrino) escaped detector
- Longitudinal momentum and visible energy: pz
 - Particles escaping detection have large p_z
 - Visible p_z not conserved \Rightarrow not a useful variable
- Polar angle θ (angle between beam axis and particle)
 - Not Lorentz invariant, depends on longitudinal boost of system
- Rapidity *y* and Pseudorapidity *η*

$$\mathbf{y} = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \frac{1}{2} \ln \left(\frac{x_1}{x_2} \right) \implies x_1 = x_2 \cdot e^{2\mathbf{y}} , \quad \eta = \frac{1}{2} \ln \left(\frac{|\bar{p}| + p_z}{|p| - p_z} \right) = -\ln \left(\tan \frac{\theta}{2} \right) \underset{M=0}{\notin} \mathbf{y}$$

- *dN/dy* distribution independent of Lorentz boosts along the beam axis
- Particle production in hadron colliders is ~ constant in y

Starting up an experiment

Data taking: ATLAS control room

Muon flux at surface: ~130 Hz / m² for E_{μ} > 1 GeV average energy ~4 GeV

Muon flux in ATLAS detector (simulation): ~4 kHz in muon fiducial volume ~15 Hz in TRT barrel

Charge ratio: μ^+ / $\mu^- \sim 1.27$ [T. Hebbeker, C. Timmermans, hep-ph/0102042]

Simulated cosmic flux in ATLAS cavern: integration over 10 msec

More Cosmic Muons in CMS (both charges!) ...

Through barrel and endcap muon detectors

Studying cosmic rays

Charge ratio

Showers of muons

Alignment of detectors

(Another perfect use of cosmic rays)

Muon Alignment Also Uses (Straight) Tracks

⁸ [mm] residuals [mm] 41

 501 ± 6.2

 -2.094 ± 0.015

 $\textbf{1.199} \pm \textbf{0.020}$

residuals [mm]

935.4 ± 14.2

8 10 residuals [mm]

950.7 ± 14.5

 0.02156 ± 0.00673

 0.4326 ± 0.0095

 $\textbf{0.1336} \pm \textbf{0.0068}$

 $\textbf{0.4299} \pm \textbf{0.0092}$

Constant

Constant

Mean

Sigma

Constant

Mean

Sigma

2

Mean Sigma

"Weak Modes"

Residuals insensitive against some types of misalignment \rightarrow effect on physics !

ATLAS Muon System – Active Material

Summary of today

Mostly pretty pictures, more about physics tomorrow!