
FYST17 Lecture 9
More statistical methods in Particle 

Physics
Thanks to J. Morris, S. Menzemer
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Suggested reading: Statistics book chap 8



Outline

• Systematic uncertainties

– Definition, examples

• The a2 mass  splitting measurement

• ”Blind” analysis

• Estimating efficiencies

• Estimating backgrounds
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What is a systematic uncertainty?

All uncertainties that are not directly due to the 
statistics of the data. For instance: 

• Badly known backgrounds

• Badly known detector resolutions

• Wrong calibrations

• Badly known acceptances or efficiencies

• Preferred outcomes

• External factors, such as theory uncertainties on 
cross sections etc

• Other biases ….
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Examples
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Examples
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Statistical (random) vs systematic 
uncertainties

Example:
Mtop = 173.34 ± 0.36 ± 0.67 GeV

More data will not help!

Statistical Systematic
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Evaluating uncertainties 
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These are usually called 
the systematic 
uncertainties

2 % !



How are systematics estimated?!

• No standard recipe! Some examples: 

• If amount of material important, check simulation with 
different amount of material

• If efficiencies important, try varying nominal values with 1
and see the effect

– This is standard, test effect of changes in analysis procedure (for 
instance different fit window)

• Compare data and simulation in general to see differences

• Divide data up in periods with different conditions and 
compare 

• …

• A bit of an art, actually
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Example: systematic difference data & MC
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Example: PDF uncertainties
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PDF = Particle Density Functions
of the proton
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@JMorris

Resulting in this →
variation



Example: systematics table for a t ҧ𝑡
mass measurement
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How to look for a particle

1) Look in high-energy collisions for events with multiple output 
particles that could be decay products. 

(for instance, K0 → +-, displaced vertex)

2)   Reconstruct invariant mass from assumed decay products

3)   Make a histogram of the 

masses

4)   Look for a peak indicating a 

state of well-defined mass

not
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A Cautionary Tale: One or two peaks?
Example 8.4 Late 1960’s: 

CERN experiment observes 
A2 mesons. Appeared to be 
a doublet – with two mass 
peaks!
Statistical significance of 
split very high!

But there really is only 1 
particle here – what went 
wrong?
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What went wrong?
 The dip was noticed already in an early run. 

Likely a statistical fluctuation but experimenters 
suspected it was real 

 Therefore, in the subsequent runs, this was 
looked into. 
 If the run did not show the dip, the run was 

looked into further.                                     
There is always something to point your finger at 
if you are looking for problems (especially at a 
complicated experiment) and thus many of the 
runs without dip were declared faulty and 
removed from the dataset. 

 Runs with some downward fluctuation were 
less carefully investigated, and usually not 
removed  the insignificant fluctuation got a 
boost

 Voila, they suddenly had a “fake” peak!
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What went wrong?
 The dip was noticed already in an early run. 

Likely a statistical fluctuation but experimenters 
suspected it was real 

 Therefore, in the subsequent runs, this was 
looked into. 
 If the run did not show the dip, the run was 

looked into further.                                     
There is always something to point your finger at 
if you are looking for problems (especially at a 
complicated experiment) and thus many of the 
runs without dip were declared faulty and 
removed from the dataset. 

 Runs with some downward fluctuation were 
less carefully investigated, and usually not 
removed  the insignificant fluctuation got a 
boost

 Voila, they suddenly had a “fake” peak!

Morale: Never remove data. If you suspect a 
problem, fix it, and start over.

In a complicated experiment this is not always possible; 
some runs are actually bad etc. and should be 
discarded. But make that decision before embarking on 
analysis. Do not let the results influence the data you 
use!
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PDG history plots!
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Reducing systematics?

• Easier once you have first estimate 

– which sources are important and which negligible

– More knowledge means more precise estimates

• Take advantage of measurements where 
certain systematics cancel out

– Measure ratios and differences

• Design analysis in more unbiased way 

– ”blind” analysis
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”Blind” analysis

Simply put, avoid looking at a potential signal 
(in data) as long as possible, to minimize biases

Most analyses are performed this way 
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Example: b observation CDF
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Estimations directly from data

To reduce systematics from data/ simulation 
differences, some estimates (or additional weights 
applied to MC) are taken directly from data (”data-
driven”)

Two examples much in use: 

• Efficiencies

• Multi-jet background
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Tag and probe
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Tag and probe

Of course this only works when the quantities under 
study are not correlated between the two electrons!!!
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TAG-electron

Probe electron

e

e
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Invariant mass should be Z mass!
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Data-driven background estimation

In some cases unrealistic to simulate the background 

– For instance multijet production faking leptons

– Low probability but (pp → jets) >> (pp→EWK→ leptons)

– Would need HUGE MC samples and understand all details 
in detector + hadronization with precision

Thus, for these often use data-driven methods instead. 
Some standard methods:

– ”ABCD” methods

– Matrix method

– Fake factor method
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ABCD method
Two uncorrelated variables for each channel divided up into 4 
regions in that parameter space

Region A = Signal concentrated region

Regions B, C, D = background concentrated regions (control 
regions)

Amount of QCD bkg due to hadronic 

jets in A can be estimated as: 

NA= 
NB×NC

ND

In realistic cases (with signal also in 

B, C,D) use a likelihood to estimate 

relative rates in the 4 regions. 
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Example from the lepton-jets 
search (JHEP 03 (2016) 026)

Recently (sort of) published search for dark photons, dark 
fermions. Model to explain PAMELA positron excess

Signal ”polution” exists, thus a 

likelihood fit used. Performance:
QCD predicted
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The Matrix method
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Built from two rates:

The real rate: probability that a real lepton identified as a loose lepton gets 

identified as a tight lepton

The fake rate: probability that a real jet identified as a loose leptons is 
identified as tight lepton

Single lepton selection: the # of loose and tight leptons can be 

written as:   NL =NR + NF;   NT= εRNR + εFNF
Where ’s are the fraction of events that pass from loose to tight

These are measured in control data samples, depends on 
kinematics and jet type

In the end results in weights given to each event: 

𝑤 =
𝜀𝐹𝜀𝑅

𝜀𝑅 − 𝜀𝐹
if it fails loose cuts and 

𝜀𝐹

𝜀𝑅−𝜀𝐹
(𝜀𝑅 − 1)

otherwise

L      L                             L               L
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The Matrix method 
The matrix when selecting events with two leptons:: 

Estimated background  given by event weight: wTT = r1f2 wRF + f1 r2 wFR + f1f2wFF
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Fake factors
Define data control region inverting some selection criteria, then 

extrapolate this into signal region:  𝑓 ≡
𝑁𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝐴𝑛𝑡𝑖−𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
where f= function(pT , )

Example with two

muons:  

Nmultijet =σ𝑖=1
𝑁(𝐴+𝑆)

𝑓 𝜇 +
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෍
𝑖=1

𝑁(𝑆+𝐴)

𝑓 𝜇 + ෍
𝑖=1

𝑁(𝐴+𝐴)

𝑓(𝜇)

Needs independent sample for measuring f, as well as corrections for other 
backgrounds
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Examples of results
(ATLAS-CONF-2016-051)

This search sets a limit of doubly-charged higgs (DCH) mass between 420 GeV and 
530 GeV (depending on the couplings)

Excess: 1.5  , p-value 0.9
Deficit: 1.3 , p-value 0.09
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Pros and cons
• ABCD method

– Simple, if applicable

– Hard to find the best, uncorrelated variables, and to test validity of 
method in advance

• Matrix method: 

– Precise, in theory

– In reality, lots of efficiencies to be measured – i.e. potentially 
correlated or large uncertainties

– Overlaps between different types of backgrounds hard to distinguish

• Fake factors

– ”simplified” matrix method 

– Some precision lost

– How to define appropriate control regions
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Alternatives in special cases

The sidebands can be used 
to estimate the background 
under a peak

A smooth, high statistics background can be fitted:

B0 mass

2015 diphoton bump

36



This you can try yourself: in ROOT library find 
macro rf_fit_for_peak.cc

Gaussian peak on pol background: the J/ mass peak

Signal 𝐺 𝑥, 𝜇, 𝜎 =
1

𝜎 2𝜋
𝑒− 𝑥−𝜇 2/2𝜎2

Background 𝑃 𝑥 = 𝑎𝑥 + 𝑏𝑥2

i.e. the total pdf is 𝑁𝑠𝑖𝑔𝑛𝑎𝑙 𝐺 𝑥, 𝜇, 𝜎 + 𝑁𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑃(𝑥)

Do the fit! :

 = 0.043  0.005

a =  −0.14−0.08
+0.13

b = 0.045  0.008
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 is fixed at J/ mass 3.15 GeV
 0.05 GeV, allowed to float



Checks: Run MC simulations (”Toy MC”) to validate!
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Checking if error on signal yield reasonable

Log likelihood test: is − lnℒ𝐷𝐴𝑇𝐴 compatible with − lnℒ𝑀𝐶 ?



Background estimation cont.

• Optimal strategy depends on the specific analysis! 

– Simulation or data-driven, or a combination?

– Which data-driven method

• More methods than shown here (for instance 
template method often used) and variations over the 
”standard” methods

• In some cases we use more than one method – very 
useful to get a real estimate of systematic 
uncertainties in either methods 

– (but of course time consuming)
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Summary

• Systematic uncertainties important – can be your 
dominant source of uncertainty!

• Hard to estimate – no recipe

– Nevertheless we do have some go-to procedures

– Self critical attitude (paranoia?!) can help uncover hidden 
systematics

• To decrease potential biases, most analyses are 
performed as ”blind” analyses

• Statistical methods come in different disguises

– Efficiencies and background estimates are sources of 
systematic uncertainties
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Links to ROOT framework 
https://root.cern.ch and 

https://root.cern.ch/notebooks/HowTos/HowTo_ROOT-Notebooks.html

Python flavour
In order to use ROOT in a Python notebook, we first need to import the ROOT 

module. During the import, all notebook related functionalities are activated.

In [1]: import ROOT 

Welcome to ROOTaaS 6.05/01 

Now we are ready to use PyROOT. For example, we create a histogram.

In [2]:

h = ROOT.TH1F("gauss","Example histogram",100,-4,4) 

h.FillRandom("gaus") 

Next we create a canvas, the entity which holds graphics primitives in ROOT.

In [3]:

c = ROOT.TCanvas("myCanvasName","The Canvas Title",800,600) 

h.Draw() 

For the histogram to be displayed in the notebook, we need to draw the canvas.

In [4]:

c.Draw() 
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https://root.cern.ch/
https://root.cern.ch/how/how-use-pyroot-root-python-bindings
https://root.cern.ch/root/htmldoc/TCanvas.html

