X. Charge conjugation and parity in weak interactions

Parity

REMINDER:

The parity transformation is the transformation by reflection:

$$\bar{r} \rightarrow \bar{r}' = -\bar{r}$$
 or $x, y, z \rightarrow x', y', z' = -x, -y, -z$

it reverses the momentum (p) but not $\overline{L} = \overline{r} \times \overline{p}$ or spin.

A parity operator \hat{P} is defined as

$$\rightarrow$$

$$\hat{P}\psi(\bar{r}, t) = p\psi(-\bar{r}, t)$$
 where $p = \pm 1$

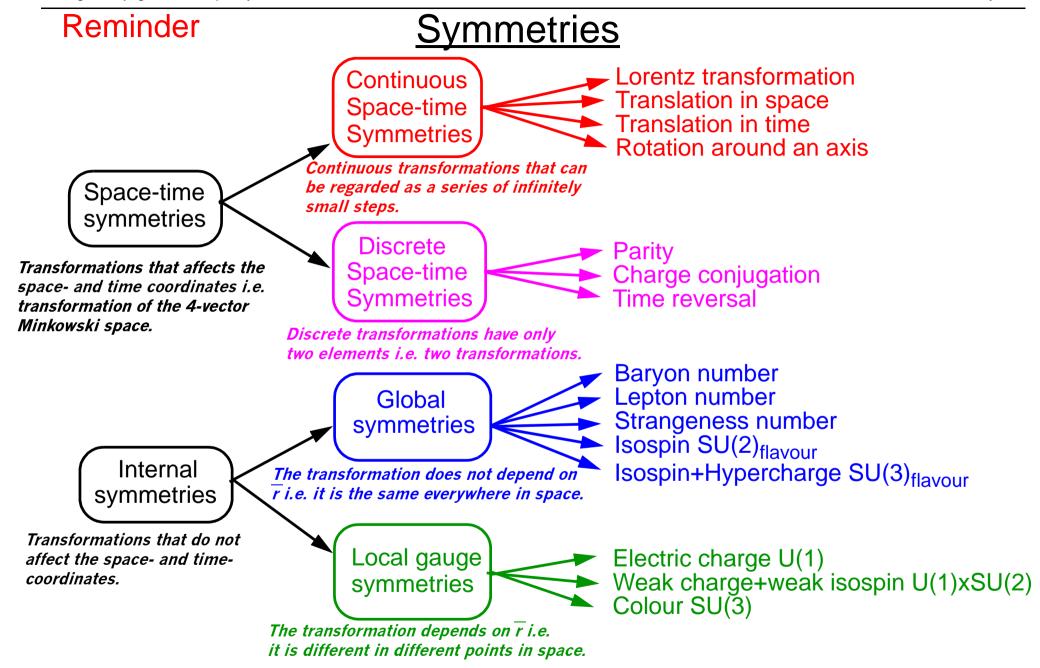
Charge conjugation

The charge conjugation replaces particles by their antiparticles, reversing charges and magnetic moments

$$\rightarrow$$

$$\hat{C}\Psi_a = c\Psi_{\bar{a}}$$
 where $c = \pm 1$

meaning that from the particle in the initial state we go to the antiparticle in the final state.



- While parity is conserved in strong and electromagnetic interactions, it is violated in weak processes:
- 1956: Based on the measurements of Kaon decays, Lee & Yang propose that parity is violated in weak processes:

Two known decays of the K⁺ were:

$$K^{+} \to \pi^{0} + \pi^{+}$$
 and $K^{+} \to \pi^{+} + \pi^{+} + \pi^{-}$

The intrinsic parity of a pion P_{π} = -1, and for the $\pi^0\pi^+$ and $\pi^+\pi^+\pi^-$ states the parities are

$$P_{\pi\pi} = P_{\pi}^2(-1)^L = 1$$
 since L = L₁₂ = 0

$$P_{\pi\pi\pi} = P_{\pi}^{3}(-1)^{L} = -1 \text{ since L} = L_{12} + L_{3} = 0$$

Since the two final states have opposite parities, one of the K⁺ decays must **violate** parity!

- 1957: Wu carries out studies of parity violation in β-decay. The 60 Co β-decay into 60 Ni*+e⁻ + $^{-}$ ν_e was studied.
- The ⁶⁰Co sample was cooled to 0.01 K to prevent thermal disorder.
- The sample was placed in a magnetic field ⇒ the nuclear spins were aligned along the field direction

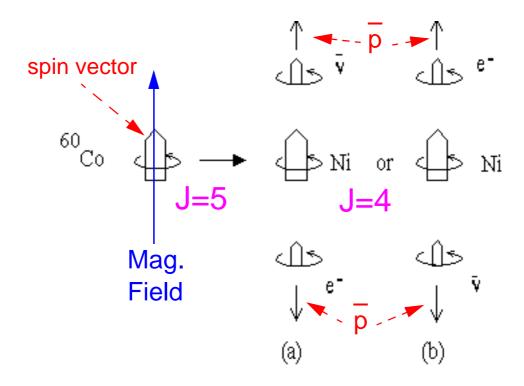


Figure 125: Possible β -decays of 60 Co: case (a) is preferred.

- If parity is conserved, processes (a) and (b) must have equal rates.
 - Electrons were emitted predominantly in the direction opposite the ⁶⁰Co spin

Another case of both parity and C-parity violation was observed in muon decays:

$$\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

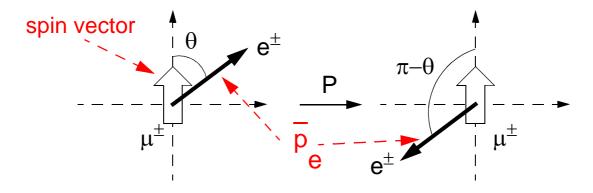


Figure 126: Effect of a parity transformation on the muon decays above

The angular distribution of the electrons (positrons) emitted in $\mu^{-}(\mu^{+})$ decay are given by

$$\Gamma_{\mu^{\pm}}(\cos\theta) = \frac{1}{2}\Gamma_{\pm}\left(I - \frac{\xi_{\pm}}{3}\cos\theta\right) \tag{136}$$

here ξ_{\pm} are constants – "asymmetry parameters", and Γ_{\pm} are total decay rates \Rightarrow inverse lifetimes

$$\Gamma_{\pm} = \int_{-1}^{1} \Gamma_{\pm} (\cos \theta) d\cos \theta \equiv \frac{1}{\tau_{\pm}}$$
 (137)

If the process is invariant under charge conjugation (C-invariance) ⇒

$$\Gamma_{+} = \Gamma_{-} \qquad \xi_{+} = \xi_{-} \qquad (138)$$

(rates and angular distributions are the same for e⁻ and e⁺)

If the process is P-invariant, then angular distributions in forward and backward directions are the same:

$$\Gamma_{\mu^{\pm}}(\cos\theta) = \Gamma_{\mu^{\pm}}(-\cos\theta) \qquad \xi_{+} = \xi_{-} = 0 \quad (139)$$

Experimental results:

$$\Gamma_{+} = \Gamma_{-} \qquad \xi_{+} = -\xi_{-} = 1,00 \pm 0,04 \qquad (140)$$

Both C- and P-invariance are violated!

However, the combined operation CP is conserved since that requires

$$\Gamma_{\mu^{+}}(\cos\theta) = \Gamma_{\mu^{-}}(-\cos\theta) \tag{141}$$

$$\Gamma_{+} = \Gamma_{-} \qquad \xi_{+} = -\xi_{-} \qquad (142)$$

which is in agreement with the experiments.

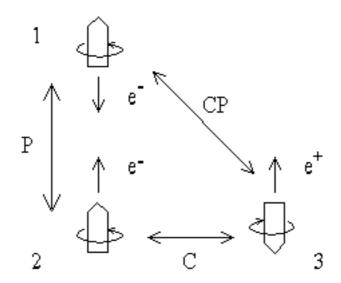


Figure 127: P-, C- and CP-transformation of an electron

The combined transformation CP is a weaker requirement than the individual transformations P and C and it is conserved.

Helicity

helicity – the spin is quantized along the particle's direction of motion instead of along an arbitrary z-direction

$$\hat{\Lambda} = \frac{\bar{s} \cdot \bar{p}}{|\bar{p}|} \tag{143}$$

$$\hat{\Lambda} \Psi = \lambda \Psi$$

The eigenvalues of the helicity operator are $\lambda = -s, -s+1, ..., +s$, \Rightarrow for spin-1/2 particle it can be either -1/2 or 1/2

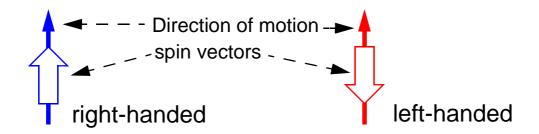


Figure 128: Helicity states of spin-1/2 particle

A particle with $\lambda=+1/2$ is called right handed. A particle with $\lambda=-1/2$ is called left handed.

A subscript R or L is used to denote if a state is right or left handed e.g. e^{-}_{R} and v_{L}

1958: Goldhaber et al. measured the helicity of the neutrino by studying electron capture in europium:

$$e^{-} + {}^{152}Eu \rightarrow {}^{152}Sm^* + v_e$$
 (144)
 $152Sm + v$ (145)

- In this reaction the initial state has zero momentum and $^{152}\mathrm{Sm}^*$ and v_{e} recoil in opposite directions.
- Events with the γ emitted in the direction of motion of the ¹⁵²Sm* were selected so that the overall observed reaction was:

$$e^{-} + {}^{152}Eu (J=0) \rightarrow {}^{152}Sm(J=0) + v_e + \gamma$$
 (146)

- The spin of the neutrino (+1/2 or -1/2) and the photon (+1 or -1) must add to give the spin of the electron (+1/2 or -1/2).
- The helicity (polarization) of the photons was determined by studying their absorption in magnetized iron.

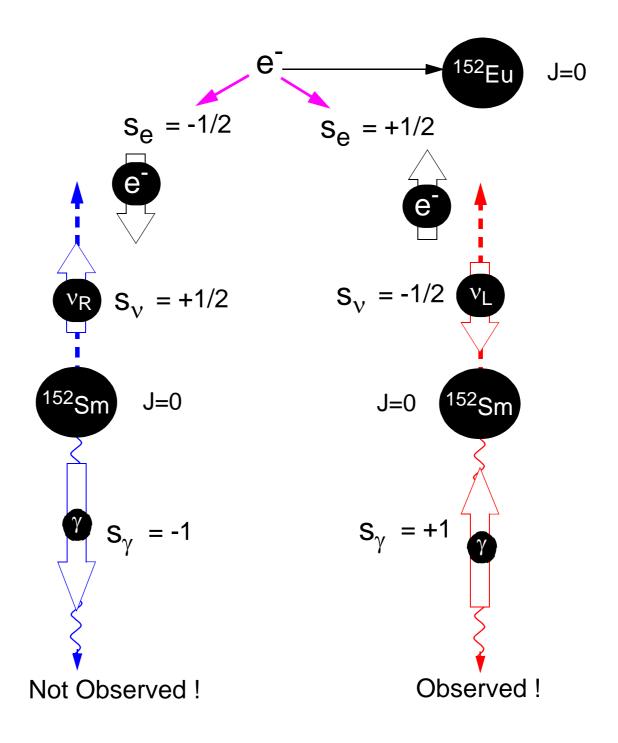


Figure 129: From the helicity of the photons it is possible to determine the helicity of the neutrinos.

From the measured photon helicity it was concluded that neutrinos must be left-handed.

V-A interaction

- V-A interaction theory was introduced by Fermi as an analytic description of spin dependence of charged current interactions.
- It denotes "polar Vector Axial vector" interaction
- *A Polar vector* is one which direction is reversed by parity transformation e.g. momentum \bar{p}
- An Axial vector is one which direction is not changed by parity transformation e.g. spin \bar{s} or orbital angular momentum $\bar{L} = \bar{r} \times \bar{p}$
- The weak current has both vector and axial components, hence parity is not conserved in weak interactions
- Main conclusion: if $v \approx c$, only left-handed fermions v_L , e_L etc. are emitted, and right-handed antifermions.
- The very existence of preferred states violates both C- and P- invariance

- Neutrinos (antineutrinos) are always relativistic and hence always left(right)-handed
- For other fermions, the preferred states are left-handed. Right-handed states are not completely forbidden but suppressed by the factor

$$\left(1 - \frac{v}{c}\right) \approx \frac{m^2}{2E^2} \tag{147}$$

Consider the two pion decay modes:

$$\pi^+ \to e^+ + \nu_e \tag{148}$$

$$\pi^+ \to \mu^+ + \nu_{\mu} \tag{149}$$

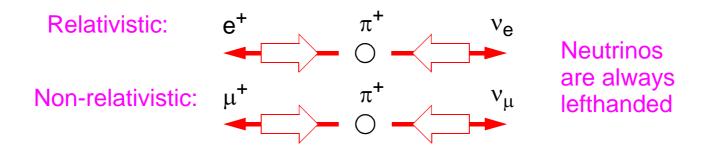


Figure 130: Helicities of leptons emitted in a pion decay

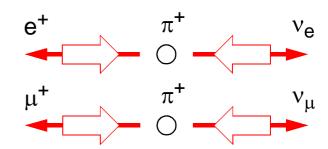
– The π^+ has spin-0 and it is at rest \implies the spins of the charged lepton and the neutrino must be opposite.

- The neutrinos are always left-handed ⇒ the charged leptons have to be left-handed as well.
- BUT: the e^+ and the μ^+ should be right-handed since they are anti-fermions.
 - In these decays the electron will be relativistic but not the muon (due to its large mass).
 - It follows that the pion to muon decay should be allowed but the pion to positron decay should be suppressed.

Left-handed

Should be right-handed since it is relativistic

Can be left-handed since it is non-relativistic



– The suppression factor for positrons is expected to be of the order 10⁻⁵.

The measured ratio:

$$\frac{\Gamma(\pi^+ \to e^+ \nu_e)}{\Gamma(\pi^+ \to \mu^+ \nu_{\mu})} = (1.230 \pm 0.004) \times 10^{-4}$$
 (150)

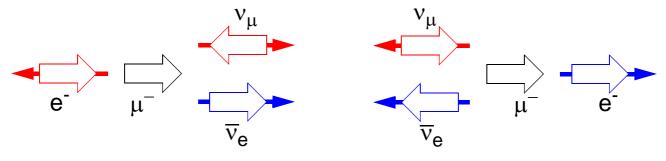
Muons emitted in pion decays are always polarized and this can be used to measure muon decay symmetries by detecting the relativistic electrons in the following decays:

$$\pi \rightarrow \mu^{-} + \overline{\nu}_{\mu}$$

$$e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

$$(151)$$

The electrons are emitted in decays when both the v_{μ} and the \overline{v}_{e} are emitted in the direction opposite to the e^{-} :



- (a) Left-handed electrons Favoured
- (b) Right-handed electrons Surpressed

Figure 131: Muon decays with high energy electron emission.

The electron must have a spin parallel to the muon spin \Rightarrow configuration (a) with left-handed electrons is strongly preferred \Rightarrow this is observed experimentally as a forward-backward asymmetry.

Neutral kaons

Lt is possible to produce the neutral kaons K^0 =ds and K^0 =sd in π p-collisions. This is a strong interaction process and strangeness has to be conserved:

$$\pi^{-} + p \to K^{0} + \Lambda$$
s: 0 0 +1 -1
$$\pi^{+} + p \to \overline{K}^{0} + p + K^{+}$$
s: 0 0 -1 0 +1

- The kaons that are produced in this way are pure K^0 =ds and K^0 =sd states.
- However, K^0 and \overline{K}^0 can be converted into each other since strangeness is not conserved in weak interactions:

$$S=+1 \quad K^0 \left\{ \begin{array}{c} d & \underbrace{u} & s \\ W^+ & W^- & \overline{d} \end{array} \right\} \overline{K}^0 \quad S=-1$$

Figure 132: Example of a process converting K^0 to \overline{K}^0 .

- The observed physical particles are linear combinations of K^0 and K^0 , since there is no conserved quantum number to distinguish them. The phenomenon is called $K^0-\overline{K}^0$ mixing.
- We know that neither parity nor charge conjugation are conserved in weak decays. The combined operation CP is, however, almost conserved.
- In this case the CP operators eigenstates can be written as a mixture of K^0 and K^0 :

$$K_I^0 = \frac{1}{\sqrt{2}}(K^0 + \overline{K}^0) \tag{152}$$

$$K_2^0 = \frac{1}{\sqrt{2}}(K^0 - \overline{K}^0) \tag{153}$$

so that

$$\hat{C}PK_1^0 = K_1^0 \text{ and } CPK_2^0 = -K_2^0$$
 (154)

i.e. the CP eigenvalues are cp=+1 for K_1^0 and cp=-1 for K_2^0 and the K_1^0 can therefore only decay to cp-even states while the K_2^0 only to cp-odd states.

Experimentally observed are two types of neutral kaons: K_S^0 ("S" for "short", lifetime $\tau = 0.9 \times 10^{-10} s$) and K_L^0 ("long", $\tau = 500 \times 10^{-10} s$).

- Can the K_S^0 be identified with the K_I^0 CP-eigenstate, and the K_L^0 with the K_2^0 ?
- If CP-invariance holds for neutral kaons, K_S^0 should decay only into states with cp=1 such as 2π -states, and K_L^0 into states with cp=-1 such as 3π -states:

$$K_S^0 \to \pi^+ \pi^-, \qquad K_S^0 \to \pi^0 \pi^0$$
 (155)

- The parity of a two-pion state is $P = P_{\pi}^{2}(-1)^{L} = 1$
- The C-parity of a $\pi^0\pi^0$ state is $C=(C_{\pi^0})^2=1$, and of a $\pi^+\pi^-$ state: $C=(-1)^L=1$
- i.e. cp= 1 for the $\pi^+\pi^-$ and $\pi^0\pi^0$ states
- i.e. the assumption that $K_S^0 = K_I^0$ seem to be correct.

$$K_L^0 \to \pi^+ \pi^- \pi^0, \qquad K_L^0 \to \pi^0 \pi^0 \pi^0$$
 (156)

– The parity of the $3-\pi$ states are -1

- The C-parity of
$$\pi^0 \pi^0 \pi^0$$
 is $C = (C_{\pi^0})^3 = 1$

- The C-parity of
$$\pi^+\pi^-\pi^0$$
 is $C = C_{\pi^0}(-1)^{L_{\pi\pi}} = 1$

- i.e. the 3- π final states above have cp=-1
- i.e. the assumption that $K_L^0 = K_2^0$ seem to be correct.

Summary:

The neutral Kaon eigenstates in strong interactions are:

$$\begin{array}{ccc}
\overline{K^0} &=& d\bar{s} \\
\overline{K}^0 &=& s\bar{d}
\end{array}$$

The neutral Kaon eigenstates in weak interactions (if CP is conserved) are:

$$\begin{pmatrix} K_s^0 = K_1^0 = \frac{1}{\sqrt{2}} (K^0 + \overline{K}^0) \\ K_L^0 = K_2^0 = \frac{1}{\sqrt{2}} (K^0 - \overline{K}^0) \end{pmatrix}$$

Strangeness Oscillations

$$\begin{cases} K_{S}^{0} = \frac{1}{\sqrt{2}} (K^{0} + \overline{K}^{0}) \\ K_{L}^{0} = \frac{1}{\sqrt{2}} (K^{0} - \overline{K}^{0}) \end{cases} \implies \begin{cases} K^{0} = \frac{1}{\sqrt{2}} (K_{S}^{0} + K_{L}^{0}) \\ \overline{K}^{0} = \frac{1}{\sqrt{2}} (K_{S}^{0} - K_{L}^{0}) \end{cases}$$

Kaons created at t=0 can be written as:

$$\begin{cases} K^{0}(0) = \frac{1}{\sqrt{2}} (K_{S}^{0}(0) + K_{L}^{0}(0)) \\ \overline{K}^{0}(0) = \frac{1}{\sqrt{2}} (K_{S}^{0}(0) - K_{L}^{0}(0)) \end{cases}$$

and the time-depence of the kaon states as:

$$K^{0}(t) = \frac{1}{\sqrt{2}} \left(e^{-iE_{s}t} e^{-\Gamma_{s}t/2} K_{s}^{0}(0) + e^{-iE_{L}t} e^{-\Gamma_{L}t/2} K_{L}^{0}(0) \right)$$

$$\bar{K}^{0}(t) = \frac{1}{\sqrt{2}} \left(e^{-iE_{s}t} e^{-\Gamma_{s}t/2} K_{s}^{0}(0) - e^{-iE_{L}t} e^{-\Gamma_{L}t/2} K_{L}^{0}(0) \right)$$

if the time is measured in the restframe of the kaons then $E_s=m_s$ and $E_L=m_L$ are the masses of the K_s and K_L and Γ_s and Γ_L are the decay rates with $\Gamma=1/\tau$ as usual.

Assume that a pure K^0 beam is produced by the reaction $\pi^- + p \rightarrow K^0 + \Lambda$ at t=0, then

$$K^{0}(t) = A(t)K^{0}(0) + B(t)\overline{K}^{0}(0)$$
 where

$$\begin{cases} A(t) = \frac{1}{2} \left(e^{-(im_s + \Gamma_s/2)t} + e^{-(im_L + \Gamma_L/2)t} \right) \\ B(t) = \frac{1}{2} \left(e^{-(im_s + \Gamma_s/2)t} - e^{-(im_L + \Gamma_L/2)t} \right) \end{cases}$$

If the intensities of the K^0 and \overline{K}^0 is measured by strong interaction processes such as $\overline{K}^0 + p \rightarrow \pi^+ + \Lambda$ then one will find that they are

$$I(K^{0}) = |A(t)|^{2} = \frac{1}{4} (e^{-t\Gamma_{s}} + e^{-t\Gamma_{L}} + 2e^{-t(\Gamma_{s} + \Gamma_{L})/2} \cos(\Delta mt))$$

$$I(\overline{K}^{0}) = |B(t)|^{2} = \frac{1}{4} (e^{-t\Gamma_{s}} + e^{-t\Gamma_{L}} - 2e^{-t(\Gamma_{s} + \Gamma_{L})/2} \cos(\Delta mt))$$
where $\Delta m = m_{s} - m_{L} = 3.5 \times 10^{-6} \text{ eV}$

This phenomena when a K^0 beam partly turns into a \overline{K}^0 beam is called strangeness oscillations.

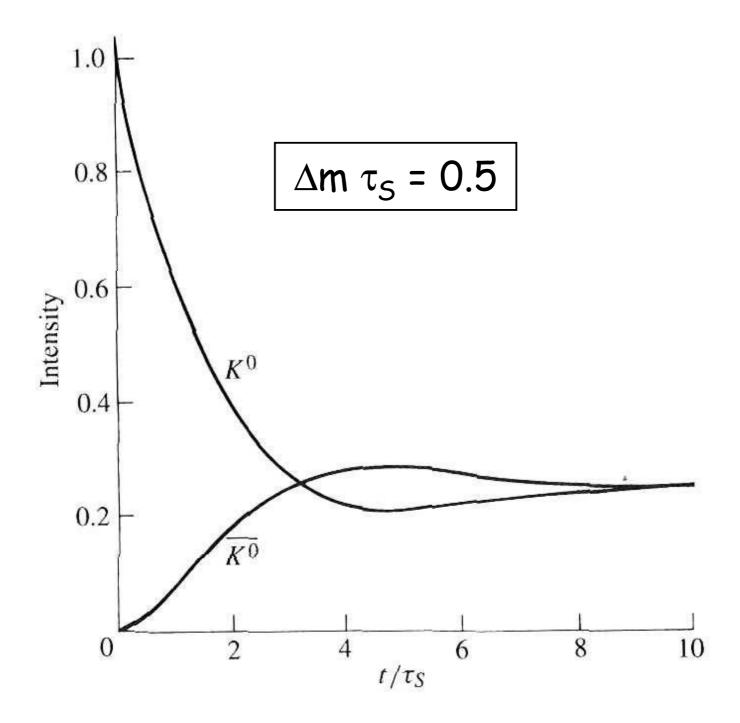


Figure 133: Strangeness oscillations: The intensity as a function of time of K^0 and \overline{K}^0 in a beam that was produced as pure K^0 .

CP-Violation

The *CP-violating* decay

$$K_L^0 \to \pi^+ \pi^- \tag{157}$$

was first observed in 1964, with a branching ratio of B≈10⁻³.

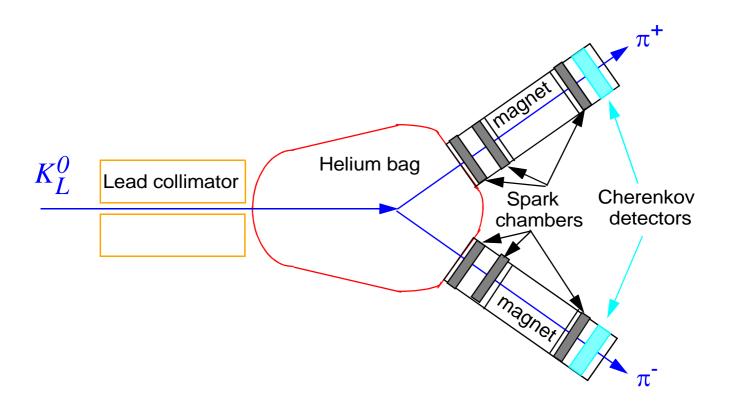


Figure 134: Sketch of the experiment that discovered CP-violation in weak decays.

In general, the physical states K_S^0 and K_L^0 don't have to correspond to pure CP-eigenstates K_I^0 and K_2^0 . Instead

$$K_{S}^{0} = \frac{1}{\sqrt{1 + |\epsilon|^{2}}} (K_{1}^{0} + \epsilon K_{2}^{0})$$

$$K_{L}^{0} = \frac{1}{\sqrt{1 + |\epsilon|^{2}}} (\epsilon K_{1}^{0} + K_{2}^{0})$$

where ε is a small complex parameter: $|\varepsilon| = 2 \times 10^{-3}$

- K_S^0 contains mostly K_I^0 but has also a small K_2^0 component while K_L^0 consists mostly of K_2^0 with a small component of K_I^0 .
- Mixing occur also for neutral B-mesons (B⁰ = db, B⁰= bd, B_s=sb and B_s =bs) and for neutral D-mesons (D⁰=cu and D⁰=uc).
- There can be different mechanisms for CP-violation, especially in the B⁰-B

 Several dedicated experiments have been built to study this system.

<u>Summary</u>

Parity and charge conjugation

- a) Parity is violated in weak processes.
- b) Parity violation was first observed in ⁶⁰Co-decays.
- c) Muon decays can be used to show that both parity and charged conjugation is violated while the combined CP operation is conserved.

Helicity

- d) Helicity is the spin quantized along the direction of motion.
- e) Neutrinos are left-handed and antineutrinos right-handed.
- f) This was first observed in reactions between electrons and ¹⁵²Eu atoms.

V-A interactions

g) While neutrinos are always left-handed other fermions are exclusively left-handed only when they are relativistic.

Neutral kaons

- h) The neutral kaons decays that are observed experimentally (K^0_S and K^0_L) are due to K^0 - \overline{K}^0 mixing.
- i) If a pure beam of K⁰ is produced one can later detect K̄⁰ in the beam (by strong interaction hyperon production). The phenomena is called strangeness oscillations.
- j) CP-violating decays of neutral kaons have been observed with a small branching ratios.