Particle Physics experimental insight

Oxana Smirnova 2006, Spring Semester Division of Experimental High Energy Physics Lund University

I. Basic concepts

Figure 1: Object sizes and observation instruments

Main concepts

- Particle physics studies elementary "building blocks" of *matter* and *interactions* between them.
- Matter consists of particles.
 - Matter is built of particles called "fermions": those that have half-integer spin, e.g.
 1/2; obey Fermi-Dirac statistics.
- Particles interact via forces.
 - Interaction is an exchange of a force-carrying particle.
- Force-carrying particles are called gauge bosons (spin-1).

Forces of nature

Figure 2: Forces and their carriers

Summary table of forces:

	Acts on/ couples to:	Carrier	Range	Strength	Stable systems	Induced reaction
Gravity	all particles Mass/E-p tensor	graviton G (has not yet been observed)	long $F \propto 1/r^2$	~ 10 ⁻³⁹	Solar system	Object falling
Weak force	fermions hypercharge	bosons W ⁺ ,W⁻ and Z	$< 10^{-17} \mathrm{m}$	10 ⁻⁵	None	β -decay
Electro- magnetism	charged particles electric charge	photon γ	long $F \propto 1/r^2$	1/137	Atoms, molecules	Chemical reactions
Strong force	quarks and gluons colour charge	gluons g (8 different)	10 ⁻¹⁵ m	1	Hadrons, nuclei	Nuclear reactions

The Standard Model

- ✤ Electromagnetic and weak forces can be described by a single theory ⇒ the *"Electroweak Theory"* was developed in 1960s (Glashow, Weinberg, Salam).
- Theory of strong interactions appeared in 1970s: "Quantum Chromodynamics" (QCD).
- The "Standard Model" (SM) combines all the current knowledge.
 - Oravitation is VERY weak at particle scale, and it is not included in the SM. Moreover, quantum theory for gravitation does not exist yet.
- Main postulates of SM:
 - 1) Basic constituents of matter are *quarks* and *leptons* (spin 1/2)
 - 2) They interact by exchanging *gauge bosons* (spin 1)
 - 3) Quarks and leptons are subdivided into 3 generations

Figure 3: Standard Model: quarks, leptons and bosons

SM does not explain neither appearance of the mass nor the reason for existence of the 3 generations.

History of the Universe as we know it

Figure 4: Summary of the current knowledge about our Universe

Units and dimensions

◆ Particle energy is measured in electron-volts:
1 eV ≈ 1.602 × 10⁻¹⁹ J

 \bigcirc 1 eV is energy of an electron upon passing a voltage of 1 Volt.

$$\bigcirc$$
 1 keV = 10³ eV; 1 MeV = 10⁶ eV; 1 GeV = 10⁹ eV

The reduced Planck constant and the speed of light.

$$\hbar = h / 2\pi = 6.582 \times 10^{-22} \text{ MeV s}$$
 (2)

$$C = 2.9979 \times 10^8 \text{ m/s}$$
 (3)

and the "*conversion constant*" is:

$$\hbar c$$
 = 197.327 × 10⁻¹⁵ MeV m

✤ For simplicity, *natural units* are used:

$$\hbar = 1$$
 and $c = 1$ (5)

thus the unit of mass is eV/c^2 , and the unit of momentum is eV/c

(4)

(1)

Four-vector formalism

Relativistic kinematics is formulated with four-vectors:

- Space-time four-vector: $x = (t, \overline{x}) = (t, x, y, z)$, where t is time and x is a coordinate vector (c=1 notation is used)
- momentum four-vector: $p = (E, \overline{p}) = (E, p_x, p_y, p_z)$, where E is particle energy and \overline{p} is particle momentum vector
- Calculus rules with four-vectors:
- 4-vectors are defined as
 - ontravariant.

$$A^{\mu} = (A^{0}, \vec{A}), B^{\mu} = (B^{0}, \vec{B}),$$
(6)

o and *covariant*.

$$A_{\mu} = (A^{0}, \overrightarrow{A}), B_{\mu} = (B^{0}, \overrightarrow{B}).$$
(7)

Scalar product of two four-vectors is defined as:

$$A \cdot B = A^{0}B^{0} - (\overrightarrow{A} \cdot \overrightarrow{B}) = A_{\mu}B^{\mu} = A^{\mu}B_{\mu}.$$
 (8)

Scalar products of momentum and space-time four-vectors are thus:

$$x \cdot p = x^{0} p^{0} - (\vec{x} \cdot \vec{p}) = Et - (\vec{x} \cdot \vec{p})$$
(9)

4-vector product of coordinate and momentum represents particle wavefunction

$$p \cdot p = p^{2} = p^{0} p^{0} - (\vec{p} \cdot \vec{p}) = E^{2} - \vec{p}^{2} \equiv m^{2}$$
(10)

4-momentum squared gives particle's invariant mass

For relativistic particles, we can see that

$$E^2 = p^2 + m^2$$
 (c=1) (11)

Antiparticles

Particles are described by wavefunctions:

$$\Psi(\vec{x},t) = Ne^{i(\vec{p}\vec{x} - Et)}$$
(12)

 \vec{x} is the coordinate vector, \vec{p} - momentum vector, \vec{E} and \vec{t} are energy and time.

Particles obey the classical Schrödinger equation:

$$i\frac{\partial}{\partial t}\Psi(\vec{x},t) = H\Psi(\vec{x},t) = \frac{\vec{p}^2}{2m}\Psi(\vec{x},t) = -\frac{1}{2m}\nabla^2\Psi(\vec{x},t)$$
(13)
here $\vec{p} = \frac{h}{2\pi i}\nabla \equiv \frac{\nabla}{i}$ (14)

For relativistic particles, $E^2 = p^2 + m^2$ (11), and (13) is replaced by the Klein-Gordon equation (15):

 \downarrow

$$-\frac{\partial^2}{\partial t^2}(\Psi) = H^2 \Psi(\vec{x}, t) = -\nabla^2 \Psi(\vec{x}, t) + m^2 \Psi(\vec{x}, t)$$
(15)

• There exist *negative* energy solutions with $E_+<0!$

$$\Psi^*(\vec{x},t) = N^* \cdot e^{i(-\vec{p}\vec{x} + E_+ t)}$$

On the problem with the Klein-Gordon equation: it is second order in derivatives. In 1928, Dirac found the first-order form having the same solutions:

$$i\frac{\partial\Psi}{\partial t} = -i\sum_{i}\alpha_{i}\frac{\partial\Psi}{\partial x_{i}} + \beta m\Psi$$
(16)

Here α_i and β are 4×4 matrices, and Ψ are four-component wavefunctions: *spinors* (for particles with spin 1/2).

$$= \begin{bmatrix} \Psi_{1}(\vec{x}, t) \\ \Psi_{2}(\vec{x}, t) \\ \Psi_{3}(\vec{x}, t) \\ \Psi_{4}(\vec{x}, t) \end{bmatrix}$$

 $\Psi(\dot{x},t)$

Dirac-Pauli representation of matrices α_i and β :

$$\alpha_{i} = \begin{pmatrix} 0 & \sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

Here *I* is a 2×2 unit matrix, 0 is a 2×2 matrix of zeros, and σ_i are 2×2 *Pauli matrices*:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Also possible is *Weyl representation*:

$$\alpha_i = \begin{pmatrix} -\sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix} \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Figure 5: Fermions in Dirac's representation

- The "hole" created by appearance of an electron with "normal" energy is interpreted as the presence of electron's *antiparticle* with the opposite charge.
- Output: Severy charged particle must have an antiparticle of the same mass and opposite charge, to solve the mystery of "negative" energy.

Discovery of the positron

Figure 6: Photo of the track in the Wilson chamber

Feynman diagrams

In 1940s, R.Feynman developed a diagram technique for representing processes in particle physics.

Figure 7: A Feynman diagram example: $e+e- \rightarrow \gamma$

Main assumptions and requirements:

- Time runs from left to right
- Output Arrow directed towards the right indicates a particle, and otherwise antiparticle
- Output A strengthered with the strengthered withered with the strengthered with the strengthered with the s
- Particles are shown by solid lines, gauge bosons by helices or dashed lines

Figure 8: Feynman diagrams for **VIRTUAL** processes involving e^+ , e^- and γ

A virtual process does not require energy conservation

A real process demands energy conservation, hence is a combination of virtual processes.

Figure 9: Electron-electron scattering, single photon exchange

Any real process receives contributions from all the possible virtual processes.

Figure 10: Two-photon exchange contribution

♦ Probability P(e⁻e⁻ → e⁻e⁻) = |M(1 γ exchange) + M(2 γ exchange) + M(3 γ exchange) +... |² (M stands for contribution, "Matrix element")

Number of vertices in a diagram is called its order.

Sector Secto

$$\alpha_{em} = \frac{e^2}{4\pi\varepsilon_0} \approx \frac{1}{137} \ll 1 \tag{17}$$

- (a) Matrix element for a two-vertex process is proportional to $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, where each vertex has a factor $\sqrt{\alpha}$. Probability for a process is $P = |M|^2 = \alpha^2$
- If α^n For the real processes, a diagram of order n gives a contribution to probability of order α^n .
- Provided sufficiently small α , high order contributions are smaller and smaller and the result is convergent: $P(\text{real}) = |M(\alpha) + M(\alpha^2) + M(\alpha^3) \dots|^2$

Often lowest order calculation is precise enough.

Figure 11: Lowest order contributions to $e^+e^- \rightarrow \gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^2$

Original Strain Stra

Figure 12: Lowest order of the process $e^+e^- \rightarrow \gamma\gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^3$

This kind of process implies 3!=6 different time orderings

Order of diagrams is sufficient to estimate the ratio of appearance rates of processes:

$$R = \frac{Rate(e^+e^- \to \gamma\gamma\gamma)}{Rate(e^+e^- \to \gamma\gamma)} = \frac{O(\alpha^3)}{O(\alpha^2)} = O(\alpha)$$

This ratio can be measured experimentally; it appears to be $R = 0.9 \times 10^{-3}$, which is smaller than α_{em} , being only a first order prediction.

Figure 13: Diagrams that are *not* related by time ordering

In the second secon

Exchange of a massive boson

Figure 14: Exchange of a massive particle X

In the rest frame of particle A: $A(E_0, \dot{p}_0) \rightarrow A(E_A, \dot{p}) + X(E_x, -\dot{p})$

where
$$E_0 = M_A$$
, $\dot{p}_0 = (0, 0, 0)$, $E_A = \sqrt{p^2 + M_A^2}$, $E_X = \sqrt{p^2 + M_X^2}$

From this one can estimate the maximum distance over which X can propagate before being absorbed: $\Delta E = E_X + E_A - M_A \ge M_X$, and this energy violation can exist only for a period of time $\Delta t \approx \hbar / \Delta E$ (Heisenberg's uncertainty relation), hence the *range of the interaction* is $r \approx R \equiv (\hbar / M_X)c = \Delta t c$ For a massless exchanged particle, the interaction has an infinite range (e.g., electromagnetic)

In case of a very heavy exchanged particle (e.g., a W boson in weak interaction), the interaction can be approximated by a *zero-range*, or *point interaction*:

Figure 15: Point interaction as a result of $M_x \rightarrow \infty$

E.g., for a W boson: $R_W = \hbar M_W = \hbar (80.4 \text{ GeV/c}^2) \approx 2 \times 10^{-18} \text{ m}$

<u>Yukawa potential (1935)</u>

Considering particle X as an electrostatic spherically symmetric potential V(r), the Klein-Gordon equation (15) for it will look like

$$\nabla^2 V(r) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) = M_X^2 V(r)$$
(18)

(In 3D polar coordinates system, $\frac{\partial^2}{\partial t^2}V(r) = (0), \nabla^2 V(r) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}V(r)\right)$).

Integration of (18) gives the solution of

$$V(r) = -\frac{g^2}{4\pi r} e^{-r/R}$$
(19)

Here *g* is an integration constant, and it is interpreted as the *coupling strength* for particle X to the particles A and B.

✤ In Yukawa theory, *g* is analogous to the electric charge in QED, and the analogue of α_{em} is

$$\alpha_X = \frac{g^2}{4\pi}$$

 α_X characterizes the strength of the interaction at distances $r \leq R$.

Consider a particle being scattered by the potential (19), thus receiving a momentum transfer $\dot{\vec{q}}$

Potential (19) has the corresponding amplitude, which is its Fourier-transform (like in optics):

$$f(\vec{q}) = \int V(\vec{x})e^{i\vec{q}\vec{x}}d^{3}\vec{x}$$
(20)

Using polar coordinates, $d^3 \dot{x} = r^2 \sin \theta d\theta dr d\phi$, and assuming $V(\dot{x}) = V(r)$, the amplitude is

$$f(\dot{q}) = 4\pi g \int_{0}^{\infty} V(r) \frac{\sin(qr)}{qr} r^2 dr = \frac{-g^2}{q^2 + M_X^2}$$
(21)

• For the point interaction, $M_X^2 \gg q^2$, hence $f(\dot{q})$ becomes a constant:

$$f(\vec{q}) = -G = \frac{-4\pi\alpha_X}{M_X^2}$$

That means that the point interaction is characterized not only by α_X , but by M_X as well

Overy useful approximation for weak interactions; in β-decays, this constant is called the "Fermi coupling constant", G_F