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VII. QCD, jets and gluons
Quantum Chromodynamics (QCD): the theory of strong interactions

Interactions are carried out by a massless spin-1 particle – gauge boson

In quantum electrodynamics (QED) gauge bosons are photons, in QCD – gluons

Gauge bosons couple to conserved charges: photons in QED – to electric 
charges, and gluons in QCD – to colour charges

Gluons have electric charge of 0 and couple only to colour charges ⇒ 
strong interactions are flavour-independent

Figure 65:   Gluon exchange between quarks
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Gluons carry colour charges themselves!

Colour quantum numbers are conserved ⇒ for the gluon on Figure 65:
I3
C I3

C r( ) I3
C b( )– 1/2 0– 1/2= = =

YC YC r( ) YC b( )– 1/3 2/3–( )– 1= = =

(102)

(103)

In general, gluons exist in 8 different colour states:
Gluon colour 
wavefunction χgi

C I3C YC

rg 1 0

rg -1 0

rb 1/2 1

rb -1/2 -1

gb -1/2 1

gb 1/2 -1

(gg-rr)/√2 0 0

(gg-rr-2bb)/√6 0 0
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Gluons hence can couple to other gluons!

Figure 66:   Lowest-order contributions to gluon-gluon scattering

Bound colourless states of gluons are called glueballs (not detected 
experimentally yet)

Gluons are massless ⇒ long-range interaction (still, not free particles unlike γ)

Principle of asymptotic freedom (1973 - Gross, Politzer, Wilczek):
At short distances between particles, strong interactions are sufficiently weak 
(lowest order diagrams) ⇒ quarks and gluons are essentially free particles

At large distances, high-order diagrams dominate ⇒ many coloured objects, 
“anti-screening” of colour charge ⇒ interaction is very strong
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Asymptotic freedom thus implies the requirement of colour confinement 
Due to the complexity of high-order diagrams, the very process of confinement 
can not be calculated analytically ⇒ only numerical models are available

Strong coupling constant αs

At short distances, quark-antiquark potential is:

V r( ) 4
3
---

αs
r

------        (r 0.1fm )<–= (104)

Constant αs is QCD analogue of αem and is a measure of the interaction strength

However, αs is a “running constant”, and increases with increase of r,
becoming divergent at very big distances.

At large distances, quarks are subject to the “confining potential” which 
grows with r:

V r( ) λr       (r 1fm )>≈ (105)
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Short distance interactions are associated with the large momentum 
transfer q between the particles:

q O r 1–( )= (106)

αs is decreasing with increasing momentum transfer

In general, if interaction involves energy exchange, too, Lorentz-invariant 
energy-momentum transfer Q is defined as

Q2 q2 Eq
2–= (107)

In the leading order of QCD, αs dependency on Q is given by

αs
12π

33 2Nf–( ) Q2 Λ2⁄( )ln
------------------------------------------------------= (108)

Here Nf is the number of allowed quark flavours, and Λ≈0.2 GeV is the 
QCD scale parameter which has to be defined experimentally.



Figure 67:   Running of αs, experimental data vs theory
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Electron-positron annihilation

A perfect laboratory for precision studies of QCD:
e+ + e- → γ∗ → hadrons

Figure 68:   e+e- annihilation into hadrons (JADE experiment display, 1979)

jets of hadrons

e+

e-
γ∗

q

q

(109)

At energies between ~12 GeV and ~45 GeV per beam, e+e- annihilation 
produces a photon which converts into a quark-antiquark pair

Quark and antiquark fragment into observable hadrons
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When beam energies are equal, quark and antiquark momenta are equal and 
counterparallel ⇒ hadrons are produced in two opposing jets of equal energies

Direction of a jet reflects direction of a corresponding quark

Compare the process (109) with the reaction
e+ + e- → γ∗ → μ+ + μ- (110)

Angular distribution of muons (spin 1/2) can be calculated as:
dσ

d θcos
--------------- e+e- μ+μ-→( ) πα2

2Q2
---------- 1 θ2cos+( )= (111)

where θ is the production angle with respect to the initial electron direction 
in center-of-mass frame. 

If quarks, like muons, have spin 1/2, angular distribution of jets goes 
like (1+cos2θ); if quarks have spin 0 – like (1-cos2θ)



Figure 69:   Angular distribution of the quark jet in e+e- annihilation,
compared with models (ALEPH experiment at LEP, 1992-1994)
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For a quark-antiquark pair, 
dσ

d θcos
--------------- e+e- qq→( ) 3eq

2 dσ
d θcos
--------------- e+e- μ+μ-→( )= (112)

where the fractional charge of a quark eq is taken into account and factor 
3 arises from number of colours.

Experimentally measured angular dependence is clearly proportional 
to (1+cos2θ) ⇒ jets are aligned with spin-1/2 particles – quarks

If a high-momentum (hard) gluon is emitted by a quark or antiquark, it 
fragments to a jet of its own, which leads to a three-jet event

Observation of three-jet events in e+e- annihilation at PETRA accelerator (DESY, 
Hamburg) in 1979 is credited as gluon discovery



Figure 70:   A three-jet event in e+e-annihilation as seen by the
DELPHI experiment at LEP (1996)
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In three-jet events, it is difficult to distinguish which of the jets belongs 
to the gluon, hence a specific sensitive variable has to be chosen

Figure 71:   Distribution of Z (as in Eq.(113)) in 3-jet e+e- annihilation events, 
compared with models 

Jets are ranked by energies E1>E2>E3 (E1 ought to be a quark), and Z is:

Z 1
3

------- E2 E3–( )= (113)
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Angular distributions of jets confirm models where quarks are spin-1/2 
fermions and gluons are spin-1 bosons

Observed rate of three-jet to two-jet events can be used to determine 
value of αs (probability for a quark to emit a gluon is determined by αs):

αs=0.15 ± 0.03     for ECM=30 to 40 GeV

Figure 72:   Principal scheme of hadroproduction in e+e- annihilation. Hadronization 
(=fragmentation) begins at distances of order 1 fm between partons
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The total cross-section of e+e- → hadrons is often expressed as in Eq.(81):

R σ e+e- hadrons→( )
σ e+e- μ+μ-→( )

------------------------------------------------≡ (114)

where the denominator is (see also Eq.(82))

σ e+e- μ+μ-→( ) 4πα2

3Q2
-------------= (115)

Using the same argumentation as in Eq.(112) and assuming that the 
main contribution comes from quark-antiquark two-jet events,

σ e+e- hadrons→( ) σ e+e- qq→( )
q
∑ 3 eq

2σ e+e- μ+μ-→( )
q
∑= = (116)

and hence

R 3 eq
2

q
∑=



Figure 73:   Measured R (Eq.(114)) with theoretical predictions for five available 
flavours (u,d,s,c,b), using two different αs calculations
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R is a good probe for both number of colours in QCD and number of 
quark flavours allowed to be produced at a given Q: from Eq.(116) it 
follows that:

R(u,d,s)=2 ; R(u,d,s,c)=10/3 ; R(u,d,s,c,b)=11/3
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If the radiation of hard gluons is taken into account, the extra factor 
proportional to αs arises:

R 3 eq
2 1

αs Q2( )

π
------------------+⎝ ⎠

⎛ ⎞

q
∑= (117)

Elastic electron scattering

Figure 74:   Dominant one-γ exchange process for elastic lepton-proton scattering

l-(p,E)

p p

γ

l-(p’,E’)

Elastic scattering: particles nature does not change
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Beams of structureless leptons (electron, positron) are a good “probe” 
for investigating properties of hadrons

Elastic lepton-hadron scattering have been used to measure sizes of 
hadrons

Angular distribution of an electron of momentum p<<m scattered by a 
static electric charge e is described by the Rutherford formula:

dσ
dΩ
-------⎝ ⎠

⎛ ⎞
R

m2α2

4p2 θ 2⁄( )4sin
-----------------------------------= (118)

Here Ω is the solid angle of a scattered particle, θ is its asimuthal angle

If the electric charge is not point-like, but is spread with a spherically 
symmetric density distribution, i.e., e → eρ(r), where ρ(r) is normalized:

ρ r( ) x
3

d∫ 1=
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then the differential cross-section (118) is replaced by
dσ
dΩ
------- dσ

dΩ
-------⎝ ⎠

⎛ ⎞
R

GE
2 q2( )= (119)

where the electric form factor

GE q2( ) ρ r( )eiq x⋅ x
3

d∫= (120)

is the Fourier-transform of ρ(r) with respect to the momentum transfer 
q p p'–= .
− For q 0= , GE 0( ) 1=   (low momentum transfer)

− For q2 ∞→ , GE q2( ) 0→   (large momentum transfer)

Measurements of the cross-section (119) determine the form-factor 
and hence the charge distribution inside the proton
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For example, the RMS charge radius is given by

rE
2 r2≡ r2ρ r( ) x

3
d∫ 6

dGE q2( )

dq2
----------------------

q2 0=

–= = (121)

In addition to GE, there is also GM – the magnetic form factor, 
associated with the magnetic moment distribution within the proton

At high momentum transfers, the recoil energy of the proton is not 
negligible, and q is replaced by the Lorentz-invariant Q, given by

Q2 p p'–( )2 E E'–( )2–= (122)

at high Q, static interpretation of charge and magnetic moment distribution breaks 
down

Eq.(121)is valid only for low Q2=q2.

For a high-energy electron (m<<E), and taking into account magnetic 
moment of the electron itself, one obtains:



dσ
dΩ
------- α2

4E2 θ 2⁄( )4sin
----------------------------------- E'

E
----⎝ ⎠

⎛ ⎞ G1 Q2( ) θ
2
---⎝ ⎠

⎛ ⎞ 2τG2 Q2( ) θ
2
---⎝ ⎠

⎛ ⎞2
sin+

2
cos=
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(123)

Here E’ is electron’s energy after scattering, and

G1 Q2( )
GE

2 τGM
2+

1 τ+
--------------------------  ;  G2 Q2( ) GM

2  ;  τ Q2

4Mp
2

-----------= = =

and form factors are normalized so that

GE 0( ) 1  and  GM 0( ) μp 2.79= = =

Experimentally, it is sufficient to measure E’ and θ of outgoing 
electrons in order to derive GE and GM using Eq.(123)

Results of proton size measurements are conveniently divided into three 
Q2 regions: low, intermediate and high 
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low Q2 ⇒ τ is very small ⇒ GE dominates the cross-section and rE
can be precisely measured:

rE 0.85 0.02 fm±= (124)

intermediate range: 0.02 ≤ Q2 ≤ 3 GeV2 ⇒ both GE and GM give 
sizeable contribution ⇒ they can be defined e.g. through a 
parameterization:

GE Q2( )
GM Q2( )

μp
---------------------≈ β2

β2 Q2+
-------------------⎝ ⎠

⎛ ⎞ 2
≈ (125)

         with β2=0.84 GeV

high Q2>3 GeV2 ⇒ only GM can be measured accurately



Figure 75:   Electric and magnetic proton form-factors, compared with different 
parameterizations
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Such form-factor behaviour (e.g., GE ≠ 1) indicates that proton is not a 
point-like structure
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Inelastic lepton scattering

Historically, was first to give evidence of quarks in protons
In what follows, only one-photon exchange is considered

Figure 76:   One-photon exchange in inelastic lepton-proton scattering

l-(p,E)

p (P,Ep)

γ

l-(p’,E’)

hadrons

The exchanged photon acts as a probe of the proton structure

Momentum transfer p p'–  must be big enough to cause very small
photon wavelength, small enough to probe a proton
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When a photon resolves a quark within a proton, the total 
lepton-proton scattering is a two-step process:

Figure 77:   Detailed picture of deep-inelastic lepton-proton scattering 
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1) First step: elastic scattering of the lepton from one of the quarks: 
                                           l- + q → l- +q          (l = e, μ)

2) Second step: fragmentation of the recoil quark and the proton remnant into 
observable hadrons
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Angular distributions of recoil leptons reflect properties of quarks from 
which they scattered

For further studies, some new variables have to be defined:

Lorentz-invariant generalization for the transferred energy ν:
2Mpν W2 Q2 Mp

2–+≡ (126)

where W is the invariant mass of the final hadron state; in the rest frame 
of the proton ν=E-E’

Dimensionless scaling variable x:

x Q2

2Mpν
--------------≡ (127)

For Q Mp»  and a very large proton momentum P Mp» , x is the fraction
of the proton momentum carried by the struck quark; 0 x 1≤ ≤
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Energy E’ and angle θ of scattered lepton are independent variables, 
describing inelastic process

dσ
dE'dΩ'
----------------- α2

4E2 θ
2
---⎝ ⎠

⎛ ⎞4
sin

-----------------------------1
ν
--- θ

2
---⎝ ⎠

⎛ ⎞2
F2 x Q2,( ) θ

2
---⎝ ⎠

⎛ ⎞2 Q2

xMp
2

-----------F1 x Q2,( )sin+cos= (128)

Form (128) is a generalization of the elastic scattering formula (123)

Structure functions F1 and F2 parameterize the interaction at the quark-photon 
vertex (just like G1 and G2 parameterized the elastic scattering)

Bjorken scaling (a.k.a scale invariance) was observed by many 
experiments: 

F1 2, x Q2,( ) F1 2, x( )≈ (129)

At Q Mp» , structure functions are approximately independent on Q2. 

Meaning: if all particle masses, energies and momenta are multiplied by a scale 
factor, structure functions at any given x remain unchanged



Figure 78:   Structure functions F2 of proton from
different experiments
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SLAC data from 1969 were first evidence of partons

Figure 79:   SLAC’s End Station A: proton target (left) and spectrometers

The observed approximate scaling behaviour can be explained if 
protons are considered as composite objects

Scaling violation is observed at very small and very big x: evidence of 
higher-order effects
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The trivial parton model assumes that proton consists of some 
partons; interactions between partons are not taken into account.

Measured cross-section at any given x is proportional to the 
probability of finding a parton with a fraction z=x of the proton 
momentum

If there are several partons,
F2 x Q2,( ) ea

2xfa x( )
a
∑= (130)

where fa(x)dx is the probability of finding parton a with fractional 
momentum between x and x+dx.

Parton distributions fa(x) are not known theoretically ⇒ F2(x) has to be 
measured experimentally

However, fa(x) are predicted to be the same for all Q2
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While form (130) does not depend on the spin of a parton, predictions for 
F1 do:

F1 x Q2,( ) 0                    (spin-0)=

2xF1 x Q2,( ) F2 x Q2,( )         (spin-1/2)=
(131)

The expression for spin-1/2 is called Callan-Gross relation and is very 
well confirmed by experiments ⇒ most evidently partons are quarks (!)

Comparing proton and neutron structure functions and those from 
neutrino scattering, squared charge ea

2  of Eq.(130) can be evaluated; it 
appears to be consistent with square charges of quarks.
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