VII. QCD, jets and gluons

- Quantum Chromodynamics (QCD): the theory of strong interactions
 - Interactions are carried out by a <u>massless</u> spin-1 particle <u>gauge boson</u>
 - In quantum electrodynamics (QED) gauge bosons are photons, in QCD gluons
 - Sauge bosons couple to conserved charges: photons in QED to electric charges, and gluons in QCD to colour charges
- ❖ Gluons have electric charge of 0 and couple only to colour charges ⇒ strong interactions are flavour-independent

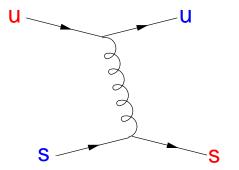


Figure 65: Gluon exchange between quarks

Gluons carry colour charges themselves!

Colour quantum numbers are conserved \Rightarrow for the gluon on Figure 65:

$$I_{3}^{C} = I_{3}^{C}(r) - I_{3}^{C}(b) = 1/2 - 0 = 1/2$$
(102)

$$Y^{C} = Y^{C}(r) - Y^{C}(b) = 1/3 - (-2/3) = 1$$
(103)

In general, gluons exist in 8 different colour states:

Gluon colour wavefunction $\chi_{gi}^{\ \ C}$	I ₃ C	YC
rg	1	0
- rg	-1	0
rb	1/2	1
- rb	-1/2	-1
gb	-1/2	1
_ gb	1/2	-1
(gg-rr)/√2	0	0
(gg-rr-2bb)/√6	0	0

Gluons hence can couple to other gluons!

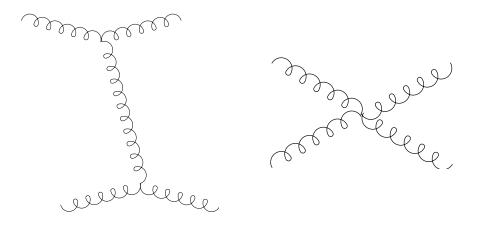


Figure 66: Lowest-order contributions to gluon-gluon scattering

- Sound colourless states of gluons are called glueballs (not detected experimentally yet)
- \bigcirc Gluons are massless \Rightarrow long-range interaction (still, not free particles unlike γ)

Principle of asymptotic freedom (1973 - Gross, Politzer, Wilczek):

- At short distances between particles, strong interactions are sufficiently weak (lowest order diagrams) \Rightarrow quarks and gluons are essentially free particles
- Output A large distances, high-order diagrams dominate \Rightarrow many coloured objects, "anti-screening" of colour charge \Rightarrow interaction is very strong

Asymptotic freedom thus implies the requirement of colour confinement

Oue to the complexity of high-order diagrams, the very process of confinement can not be calculated analytically \Rightarrow only numerical models are available

Strong coupling constant α_s

At short distances, quark-antiquark potential is:

$$V(r) = -\frac{4}{3} \frac{\alpha_s}{r} \qquad (r < 0.1 fm)$$
(104)

0 Constant α_s is QCD analogue of α_{em} and is a measure of the interaction strength

However, α_s is a "*running constant*", and increases with increase of *r*, becoming divergent at very big distances.

At large distances, quarks are subject to the "confining potential" which grows with r:

$$V(r) \approx \lambda r$$
 $(r > lfm)$ (105)

Short distance interactions are associated with the large momentum transfer \overline{q} between the particles:

$$\left|\dot{q}\right| = O(r^{-1}) \tag{106}$$

 $\odot \alpha_s$ is decreasing with increasing momentum transfer

In general, if interaction involves energy exchange, too, Lorentz-invariant energy-momentum transfer Q is defined as

$$Q^2 = \dot{q}^2 - E_q^2 \tag{107}$$

In the *leading order* of QCD, α_s dependency on Q is given by

$$\alpha_{s} = \frac{12\pi}{(33 - 2N_{f})\ln(Q^{2}/\Lambda^{2})}$$
(108)

Here N_f is the number of allowed quark flavours, and $\Lambda \approx 0.2$ GeV is the QCD scale parameter which has to be defined experimentally.

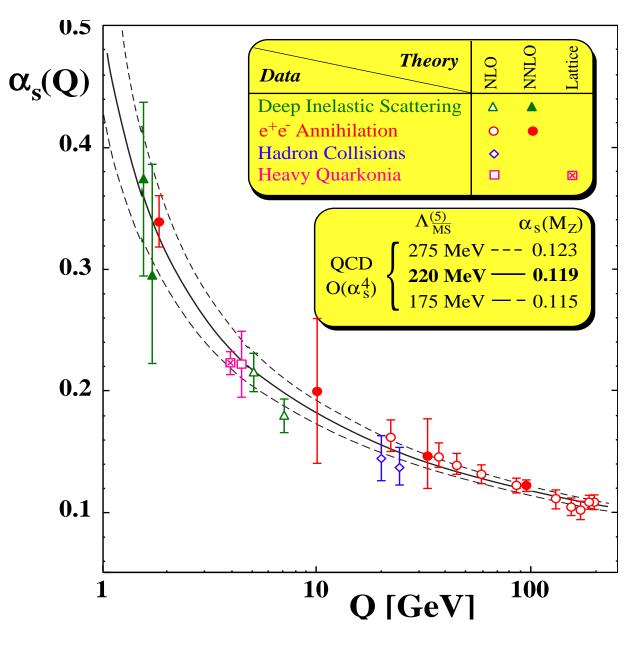


Figure 67: Running of α_s , experimental data vs theory

Electron-positron annihilation

A perfect laboratory for precision studies of QCD:

 $e^+ + e^- \rightarrow \gamma^* \rightarrow hadrons$

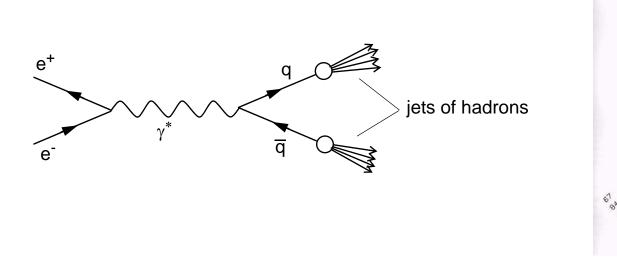


Figure 68: e⁺e⁻ annihilation into hadrons (JADE experiment display, 1979)

- At energies between ~12 GeV and ~45 GeV per beam, e⁺e⁻ annihilation produces a photon which converts into a quark-antiquark pair
- Quark and antiquark fragment into observable hadrons

(109)

When beam energies are equal, quark and antiquark momenta are equal and counterparallel \Rightarrow hadrons are produced in two opposing jets of equal energies

Oirection of a jet reflects direction of a corresponding quark

Compare the process (109) with the reaction

$$e^{+} + e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+} + \mu^{-}$$
(110)

Angular distribution of muons (spin 1/2) can be calculated as:

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to \mu^+\mu^-) = \frac{\pi\alpha^2}{2Q^2}(1 + \cos^2\theta)$$
(111)

where θ is the production angle with respect to the initial electron direction in center-of-mass frame.

♦ If quarks, like muons, have spin 1/2, angular distribution of jets goes like (1+cos²θ); if quarks have spin 0 – like (1-cos²θ)

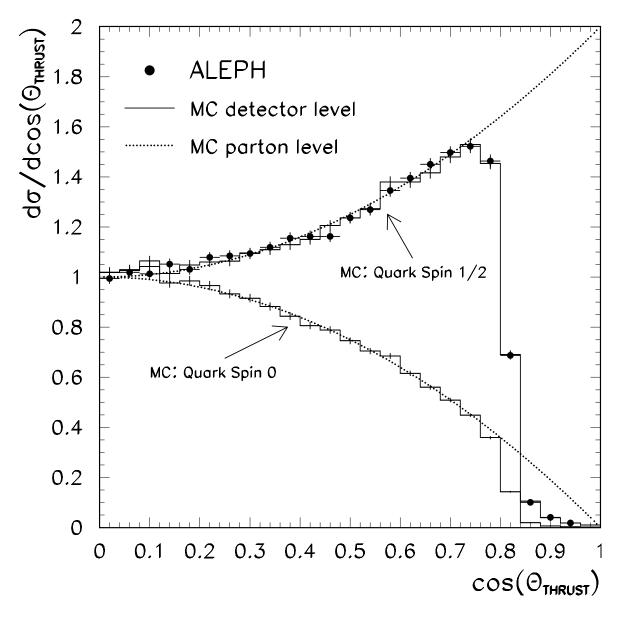


Figure 69: Angular distribution of the quark jet in e⁺e⁻ annihilation, compared with models (ALEPH experiment at LEP, 1992-1994)

For a quark-antiquark pair,

$$\frac{d\sigma}{d\cos\theta}(e^+e^- \to q\bar{q}) = 3e_q^2 \frac{d\sigma}{d\cos\theta}(e^+e^- \to \mu^+\mu^-)$$
(112)

where the fractional charge of a quark e_q is taken into account and factor 3 arises from number of colours.

← Experimentally measured angular dependence is clearly proportional to $(1+\cos^2\theta) \Rightarrow$ jets are aligned with spin-1/2 particles – quarks

- If a high-momentum (hard) gluon is emitted by a quark or antiquark, it fragments to a jet of its own, which leads to a three-jet event
 - Observation of three-jet events in e+e- annihilation at PETRA accelerator (DESY, Hamburg) in 1979 is credited as gluon discovery

	DELPH	H Run:	53578	Ev t:	12239			TD	TE	TS	٦	ГK	ту	ST	PA
5.00	Beam	45.6 GeV	Proc:		25— Sep—1996	Act		0	190	0		31	0	0	0
The second second	DAS:	14-0 c t -1994	Scan:		30—Sep—1996		(0)(289)	(0)(;	31)(0)(0)(ο.
- Cas		21:07:03			Tan+DST	Deact		0	0	0		0	0	0	0
						100000	(0)(0)	(0)(6)(0)(0)(0

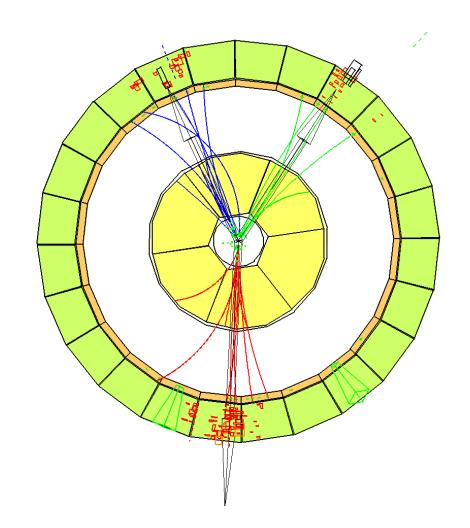


Figure 70: A three-jet event in e⁺e⁻annihilation as seen by the DELPHI experiment at LEP (1996)

In three-jet events, it is difficult to distinguish which of the jets belongs to the gluon, hence a specific sensitive variable has to be chosen

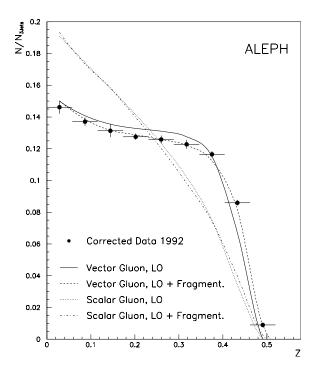


Figure 71: Distribution of Z (as in Eq.(113)) in 3-jet e^+e^- annihilation events, compared with models

Solution \bigcirc Jets are ranked by energies $E_1 > E_2 > E_3$ (E_1 ought to be a quark), and Z is:

$$Z = \frac{1}{\sqrt{3}} (E_2 - E_3)$$
(113)

- Angular distributions of jets confirm models where quarks are spin-1/2 fermions and gluons are spin-1 bosons
- Observed rate of three-jet to two-jet events can be used to determine value of α_s (probability for a quark to emit a gluon is determined by α_s):

 $\alpha_{\text{s}} \text{=} 0.15 \pm 0.03$ $\,$ for E_{CM} \text{=} 30 to 40 GeV $\,$

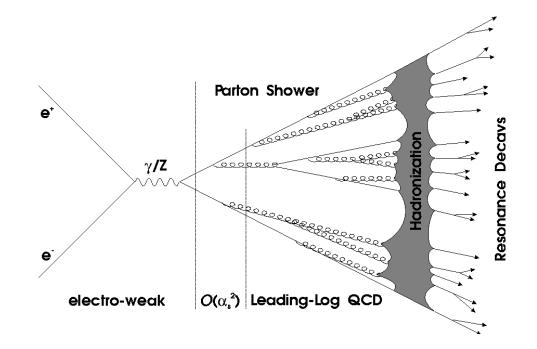


Figure 72: Principal scheme of hadroproduction in e⁺e⁻ annihilation. Hadronization (=fragmentation) begins at distances of order 1 fm between partons

The *total cross-section* of $e^+e^- \rightarrow hadrons$ is often expressed as in Eq.(81):

$$R \equiv \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$
(114)

where the denominator is (see also Eq.(82))

$$\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3Q^2}$$
 (115)

Using the same argumentation as in Eq.(112) and assuming that the main contribution comes from quark-antiquark two-jet events,

$$\sigma(e^+e^- \to hadrons) = \sum_q \sigma(e^+e^- \to q\bar{q}) = 3\sum_q e_q^2 \sigma(e^+e^- \to \mu^+\mu^-) \quad (116)$$

and hence

$$R = 3\sum_{q} e_{q}^{2}$$

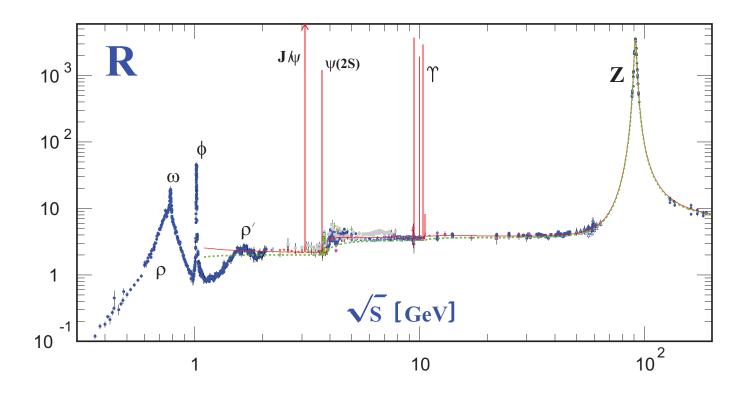


Figure 73: Measured R (Eq.(114)) with theoretical predictions for five available flavours (u,d,s,c,b), using two different α_s calculations

R is a good probe for both number of colours in QCD and number of quark flavours allowed to be produced at a given Q: from Eq.(116) it follows that:

R(u,d,s)=2 ; R(u,d,s,c)=10/3 ; R(u,d,s,c,b)=11/3

If the radiation of hard gluons is taken into account, the extra factor proportional to α_s arises:

$$R = 3\sum_{q} e_q^2 \left(1 + \frac{\alpha_s(Q^2)}{\pi} \right)$$
(117)

Elastic electron scattering

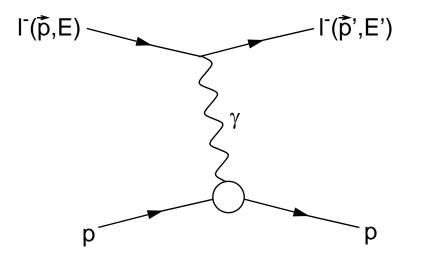


Figure 74: Dominant one-γ exchange process for elastic lepton-proton scattering

Elastic scattering: particles nature does not change

- Beams of structureless leptons (electron, positron) are a good "probe" for investigating properties of hadrons
- Elastic lepton-hadron scattering have been used to measure sizes of hadrons

Angular distribution of an electron of momentum p << m scattered by a static electric charge *e* is described by the Rutherford formula:

$$\left(\frac{d\sigma}{d\Omega}\right)_{R} = \frac{m^{2}\alpha^{2}}{4p^{2}\sin^{4}(\theta/2)}$$
(118)

Here Ω is the solid angle of a scattered particle, θ is its asimuthal angle

If the electric charge is not point-like, but is spread with a spherically symmetric density distribution, i.e., $e \rightarrow e\rho(r)$, where $\rho(r)$ is normalized:

$$\int \rho(r) d^{3} \dot{x} = 1$$

then the differential cross-section (118) is replaced by

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_R G_E^2(q^2) \tag{119}$$

where the *electric form factor*

$$G_E(q^2) = \int \rho(r) e^{i\vec{q}\cdot\vec{x}} d^3\vec{x}$$
(120)

is the Fourier-transform of $\rho(r)$ with respect to the momentum transfer $\vec{q} = \vec{p} - \vec{p}'$.

-For q = 0, $G_E(0) = 1$ (low momentum transfer)

- For $q^2 \rightarrow \infty$, $G_E(q^2) \rightarrow 0$ (large momentum transfer)

Measurements of the cross-section (119) determine the form-factor and hence the charge distribution inside the proton For example, the RMS charge radius is given by

$$r_{E}^{2} \equiv \overline{r^{2}} = \int r^{2} \rho(r) d^{3} \dot{x} = -6 \frac{dG_{E}(q^{2})}{dq^{2}} \bigg|_{q^{2} = 0}$$
(121)

- ✤ In addition to G_E, there is also G_M the magnetic form factor, associated with the magnetic moment distribution within the proton
- At high momentum transfers, the *recoil energy* of the proton is not negligible, and \dot{q} is replaced by the Lorentz-invariant Q, given by

$$Q^2 = (\vec{p} - \vec{p}')^2 - (E - E')^2$$
(122)

- O at high Q, static interpretation of charge and magnetic moment distribution breaks down
- **(a)** Eq.(121) is valid only for low $Q^2 = q^2$.
- For a high-energy electron (m<<E), and taking into account magnetic moment of the electron itself, one obtains:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4(\theta/2)} \left(\frac{E}{E}\right) \left[G_1(Q^2) \cos^2\left(\frac{\theta}{2}\right) + 2\tau G_2(Q^2) \sin^2\left(\frac{\theta}{2}\right)\right]$$
(123)

Here E' is electron's energy after scattering, and

$$G_{I}(Q^{2}) = \frac{G_{E}^{2} + \tau G_{M}^{2}}{1 + \tau}; \ G_{2}(Q^{2}) = G_{M}^{2}; \ \tau = \frac{Q^{2}}{4M_{p}^{2}}$$

and form factors are normalized so that

$$G_E(0) = 1$$
 and $G_M(0) = \mu_p = 2.79$

♦ Experimentally, it is sufficient to measure E' and θ of outgoing electrons in order to derive G_E and G_M using Eq.(123)

Results of proton size measurements are conveniently divided into three Q^2 regions: low, intermediate and high

♦ low $Q^2 \Rightarrow \tau$ is very small \Rightarrow G_E dominates the cross-section and r_E can be precisely measured:

$$r_E = 0.85 \pm 0.02 \, fm \tag{124}$$

♦ intermediate range: $0.02 \le Q^2 \le 3 \text{ GeV}^2 \Rightarrow \text{both } G_E \text{ and } G_M \text{ give sizeable contribution } \Rightarrow \text{ they can be defined e.g. through a parameterization:$

$$G_E(Q^2) \approx \frac{G_M(Q^2)}{\mu_p} \approx \left(\frac{\beta^2}{\beta^2 + Q^2}\right)^2$$
 (125)

with β^2 =0.84 GeV

♦ high Q²>3 GeV² \Rightarrow only G_M can be measured accurately

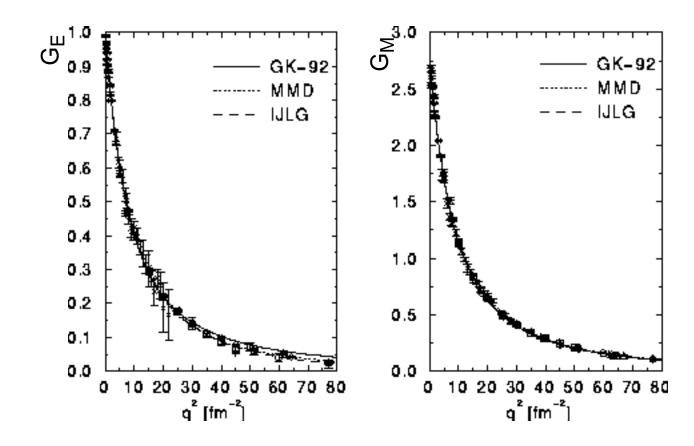


Figure 75: Electric and magnetic proton form-factors, compared with different parameterizations

Such form-factor behaviour (e.g., $G_E \neq 1$) indicates that proton is **not** a point-like structure

Inelastic lepton scattering

Historically, was first to give evidence of quarks in protons

In what follows, only one-photon exchange is considered

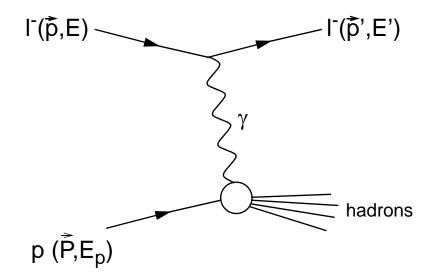


Figure 76: One-photon exchange in inelastic lepton-proton scattering

The exchanged photon acts as a probe of the proton structure

✤ Momentum transfer p = p' must be **big** enough to cause very **small** photon wavelength, small enough to probe a proton

When a photon resolves a quark within a proton, the total lepton-proton scattering is a two-step process:

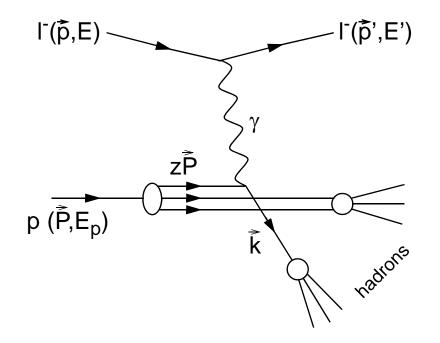


Figure 77: Detailed picture of deep-inelastic lepton-proton scattering

1) First step: elastic scattering of the lepton from one of the quarks:

$$l^- + q \rightarrow l^- + q$$
 ($l = e, \mu$)

2) Second step: fragmentation of the *recoil quark* and the proton remnant into observable hadrons

- Angular distributions of recoil leptons reflect properties of quarks from which they scattered
- For further studies, some new variables have to be defined:
- \clubsuit Lorentz-invariant generalization for the transferred energy v:

$$2M_{p}v \equiv W^{2} + Q^{2} - M_{p}^{2}$$
(126)

- where W is the invariant mass of the final hadron state; in the rest frame of the proton v=E-E'
- \diamond Dimensionless scaling variable *x*:

$$x \equiv \frac{Q^2}{2M_p \nu} \tag{127}$$

For $Q \gg M_p$ and a very large proton momentum $\vec{P} \gg M_p$, *x* is the *fraction* of the proton momentum carried by the struck quark; $0 \le x \le 1$

• Energy E' and angle θ of scattered lepton are independent variables, describing inelastic process

$$\frac{d\sigma}{dE'd\Omega'} = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \frac{1}{\nu} \left[\cos^2\left(\frac{\theta}{2}\right) F_2(x, Q^2) + \sin^2\left(\frac{\theta}{2}\right) \frac{Q^2}{xM_p^2} F_1(x, Q^2) \right]$$
(128)

Form (128) is a generalization of the elastic scattering formula (123)

- Structure functions F_1 and F_2 parameterize the interaction at the quark-photon vertex (just like G_1 and G_2 parameterized the elastic scattering)
- Bjorken scaling (a.k.a scale invariance) was observed by many experiments:

$$F_{1,2}(x,Q^2) \approx F_{1,2}(x)$$
 (129)

At $Q \gg M_p$, structure functions are approximately independent on Q^2 .

Meaning: if all particle masses, energies and momenta are multiplied by a scale factor, structure functions at any given X remain unchanged

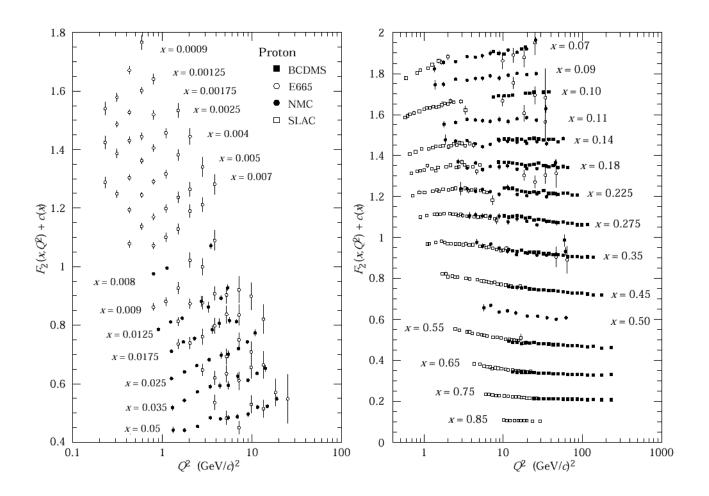


Figure 78: Structure functions F₂ of proton from different experiments

SLAC data from 1969 were first evidence of partons

Figure 79: SLAC's End Station A: proton target (left) and spectrometers

- The observed approximate scaling behaviour can be explained if protons are considered as composite objects
 - Scaling violation is observed at very small and very big X: evidence of higher-order effects

- The trivial parton model assumes that proton consists of some partons; interactions between partons are not taken into account.
- * Measured cross-section at any given x is proportional to the probability of finding a parton with a fraction z=x of the proton momentum

If there are several partons,

$$F_2(x, Q^2) = \sum_a e_a^2 x f_a(x)$$
(130)

where $f_a(x)dx$ is the probability of finding parton a with fractional momentum between x and x+dx.

- ◆ Parton distributions $f_a(x)$ are not known theoretically ⇒ $F_2(x)$ has to be measured experimentally
 - However, $f_a(x)$ are predicted to be the same for all Q²

While form (130) does not depend on the spin of a parton, predictions for F_1 do:

$$F_{1}(x, Q^{2}) = 0 \qquad (spin-0)$$

$$2xF_{1}(x, Q^{2}) = F_{2}(x, Q^{2}) \qquad (spin-1/2)$$
(131)

- ◆ The expression for spin-1/2 is called Callan-Gross relation and is very well confirmed by experiments ⇒ most evidently partons are quarks (!)
- ✤ Comparing proton and neutron structure functions and those from neutrino scattering, squared charge e_a^2 of Eq.(130) can be evaluated; it appears to be consistent with square charges of quarks.