

The ALICE TPC

The ALICE experiment – Physics questions to be addressed The ALICE TPC - TPC introduction - Design and layout Calibrating the TPC PID at high pT - Test beam results – Model comparison Conclusions

The ALICE experiment at LHC

V0 Т0 **FMD Combines the** best of STAR: **TPC and full** azimuthal coverage and PHENIX: **Photon/lepton** detectors and also has: inner tracker

Proton-proton physics with ALICE (from June 2008)

The first physics with ALICE will be proton-proton collisions:

- Provides "reference" data to understand heavy-ion collisions.
- Genuine proton-proton physics where ALICE is unique or competitive
 - Iow momentum cutoff due to low magnetic field and small material budget
 - particle identification unique in central region at LHC
 - ALICE reach p_T up to ~100GeV/c, ensuring overlap with other LHC experiments
- Proton data taking at several centre-of-mass energies (0.9 TeV?, 2.4 TeV?, 5.5 TeV? and 14 TeV)

Physics programme: interplay of non-perturbative vs. perturbative physics

- Min. bias events global properties, constraints for underlying event in high P_T signals, pileup in rare triggers
- Multi-parton interactions (high multiplicity pp events)
- Heavy Flavours (b and c quarks) [TRD, muon arm and TPC/ITS]
- Jet physics
- New physics? Rhadrons (SUSY gluinos) studied here in Lund

First p+p measurements with ALICE (and the TPC)

ALCONT & REPORT OF A CARD AND A MARKED

The ALICE TPC The key detector in ALICE

The Challenge: Pb+Pb central event in ALICE

10.3-2008

Energy loss: Free electron (Rutherford)

Electron is initially at rest

P ~ -Ze²/P²
 dσ/dE ~ Z²e⁴/P⁴ ~ 1/E²

 Where E is the energy loss
 σ is infinite (EM interaction has infinite range)

 For energy loss E < m_{electron} the electron is scattered perpendicular to the incoming charged particle

Energy loss: Electron in atom

Scattering from bound electrons can be approximated with "real" photon cross sections. <u>Energy levels</u> and <u>shell</u> <u>structure is visible</u>. Cross section is finite.

Ze

Electron is bound

Physics with the ALICE TPC P. Christiansen (Lund)

γ

Energy loss: dE/dx in materials

- As the charged particle traverses the gas it can make multiple collisions
 - dE/dx = folding of energy loss in each collision (previous slide) and cross-section (Poisson) ~ Landau distribution
- NB! Very weak mass dependence
- Low energies: dt = dx/β, area that we can scatter with: A=π*(c*dt)² ~ 1/β²
- High energies: electric field (σ) grows with γ, but eventually the medium polarizes and σ saturates

Ncollisions/Ncollisions(MIP) from PAI model

10.3-2008

ReadOut Sectors

Total >570 000 pads 2 x 18 sectors (electronic channels)

Pad signal has a long tail due to slow drifting ions

Pad signal is amplified and shaped

Total data in one event: ~ 60 MB (1 MB for p+p)

ALICE TPC design

- Minimize multiple scattering
 - Composite materials for field cage
- High occupancy
 - High readout segmentation (3D)
 - Online reduction of data
 - Neon gas (fast ion drift velocity limits space charge effects)
 - CO₂ quencher (small diffusion and good aging properties)
- Small signal (Small pads, low density gas)
 - Low noise electronics (<1000e)
 - High gain (~10⁴)
 - Non-transparent gate (<10⁻⁴)
- Good space point resolution
 - Small field distortions $\Delta E/E \approx 10^{-4}$ (field cage precision)
 - Temperature stability<0.1K gradient (Non-saturated gas)

TPC low mass field cage

RODS OROC IROC

Total $x/x_0 \sim 3\%$ radiation length at $\eta = 0$

*Gas mixture choice: Ne-CO*₂(90-10) vs. *Ne-CO*₂-*N*₂(86-9-5)

Gain measurement

Drift velocity comparison

	90-10	86-9-5
Temperature	+0.37 % / K	+0.34 % / K
Pressure	-0.15 % / mbar	-0.15 % / mbar
CO₂ concentration	-7.6 % / %CO ₂	-6.4 % / %CO ₂
N ₂ contamination	-1 % / %N ₂	-1 % / %N ₂

Gain comparison

	90-10	86-9- 5
CO ₂	+67, -20	+17, -14
concentration	% / %CO ₂	% / %CO ₂
N ₂	+34 % /	+6.3 % /
contamination	%N ₂	%N ₂

... and same diffusion coefficients.

Choice: Ne-CO2-N2(86-9-5)

- 5% lower drift velocity
- better gain stability

TPC Readout Chambers

charged particle track drifting electrons from primary ionization gating plane cathode plane anode plane E-field pad plane time) induced clusters on pad plane Anode wire 86 CIM **T** 4 () **T** plane <u>without</u> field wires 28 cm ALICE TPC end plate In total 570,132 pads 63 rows with 4 x 7.5 mm² (inner radius) 64 rows with 6 x 10 mm² **Optimized using GARFIELD** 32 rows with 6 x 15 mm² (outer radius)

10.3-2008

Simulated TPC tracking performance

TPC is ALICE main tracking detector in central barrel
Note: standard field 0.5 T
dp/p vs dN/dy: 16% → 9% @ 100 GeV, dN/dy = 2000

10.3-2008

The signal in a single pad

- Position
- Width
- Max Charge
- Total Charge

maximum dimension

10.3-2008

Physics with the ALICE TPC P. Christiansen (Lund)

5x5

First Cosmic Ray Data

Laser tracks in the TPC

The TPC provides PID <u>track by track</u> at low momentum (p<1)
 The TPC <u>can</u> PID on <u>a statistical basis</u> at intermediate (3 the resolution and/or calibration is sufficient</u>.

STAR TPC PID

STAR PID using dE/dx (high momentum!)

The PID on the relativistic rise is an added benefit, i.e., it was not originally thought of as feasible!

Test beam setup with Inner ROC at CERN PS T10

Energy loss resolution of identified particles

Energy loss resolution for the truncated charge C is ~9% (IROC~47cm out of IROC+OROC~160cm) \Rightarrow Estimated final energy loss resolution (160 cm track):

> 9.0%/√3.3~ 5.2% (low multiplicity e.g. p+p)

Truncated charge C vs betagamma βγ

The truncated mean dependence on βγ is similar to what was observed by Aleph (used in sim/TDR) and NA49.
 This confirms that there is the expected separation!

Model calculations of energy loss straggling functions

Monte Carlo simulation data from Hans Bichsel showing the Bichsel straggling function, and the Landau straggling function.

PAI (Allison and Cobb model).Cross sections from Berkowitz.

- Hans Bichsel operates with different straggling functions:
- Energy loss Δ (Theoretical)
- Energy deposit & ionization
- Electron drift and amplification
- Final ADC value (Experimental)

NIM A 562 p.154 (big review) NIM A 566 p.1 (ALICE sim comment)

First Comparison

Qualitative agreement between data and calculation (100% Neon at correct gas density)

– <u>1 parameter</u>: 1 ADC ~ 3 eV

Calculations predicts an energy resolution σ_c~8.1% while for the data we find 9.3%! (Discrepancy of 15%)

Energy resolution derived from straggling function

The resolution derived from the experimental straggling function is 7.6% and NOT the measured 9.3%!

Signals in neighboring rows show a correlation of +33%.

 \Rightarrow Information loss due to <u>charge sharing</u> that reduces the resolution

The straggling function does not contain all information!

Simulation: Detector effects

Simulation (include charge sharing detector effect) :

- Input E (from Bichsel's energy loss straggling function)
- Convert to total electrons N = E/W (W=30eV)
- <u>Diffuse (220µm/√cm)</u> and <u>Amplify (exp.)</u> each electron
- Other detector effects <u>not</u> included:
 - Capacitive coupling between neighboring rows (signal sharing)
 - Delta-electrons (small effect)

P. Christiansen (Lund)

10.3-2008

41

Tuning the ALICE simulation (3 GeV/c)

Energy loss can be well described in the simplified ALICE simulation model.

But also the correlations and spatial resolution is well described!

From the test beam results we concluded

- $\sigma C < C > \sim 5\%$ (p+p) -> 7% (PbPb central)
- C(beta-gamma) according to expectations
- Consistent with model calculations

Test beam: NIM A 565 p. 551 PID: physics/0703097

The results (and model calculations) is now being used to calibrate the ALICE TPC simulation and improve the PID description

Tuning the ALICE simulation (1 GeV/c)

Energy loss can be well described in the simplified ALICE simulation model.

But also the correlations and spatial resolution is well described!

