IX. Electroweak unification

Theory of weak interactions only by means of W[±] bosons leads to divergences: cross-sections of processes involving two W bosons grow infinitely with increasing energy

Figure 112: Examples of divergent processes

- ✤ A "good" theory (such as QED) must be *renormalizable*: all expressions can be made finite by re-expressing them in a finite number of physical parameters (like *e*, *m_e* and ħ in QED)
 - Electroweak theory is actually renormalizable, though demonstration of it is highly non-trivial

Introduction of Z⁰ boson fixes the divergence problem: Z⁰ can couple to two W bosons and thus cancel the divergence

Figure 113: Additional processes to cancel divergence

The divergence can also be cancelled by introducing a "heavy electron", but experimental evidence unambiguously favors Z⁰

Figure 114: Basic vertices for Z⁰-lepton and Z⁰-quark couplings

- Rules for Z^0 boson vertices:
- Conserved lepton numbers
- Conserved quark flavour (remember, in W vertices, quark flavour is not conserved)

 \bigcirc By applying quark-lepton symmetry and assuming there is quark mixing:

$$d'd'Z^{0} + s's'Z^{0} = (d\cos\theta_{C} + s\sin\theta_{C})(d\cos\theta_{C} + s\sin\theta_{C})Z^{0} + (-d\sin\theta_{C} + s\cos\theta_{C})(-d\sin\theta_{C} + s\cos\theta_{C})Z^{0} = ddZ^{0} + ssZ^{0}$$

It is not necessary to apply quark mixing in Z⁰ vertices

Experimental test of flavour conservation at Z⁰ vertex: $K^+ \rightarrow \pi^0 + \mu^+ + \nu_{\mu}$ (a) $K^+ \rightarrow \pi^+ + \nu_{I} + \overline{\nu_{I}}$ (b)

Figure 115: Decay (a) is allowed; decay (b) – forbidden

- Experiment 787 at the Brookhaven National Laboratory (BNL): a dedicated rare kaon decay experiment
 - K⁺beam (created by 24 GeV protons from the AGS accelerator) is deposited onto a fixed target

Figure 116: Picture of a rare event in E787 (a single pion track). Only two such events have been observed in 12 years

Measured upper limit on the ratio of the decay rates is:

$$\frac{\sum \Gamma(K^+ \to \pi^+ + \nu_l + \bar{\nu}_l)}{\Gamma(K^+ \to \pi^0 + \mu^+ + \nu_{\mu})} = 5 \times 10^{-9}$$

With this rate, the observed decays can not be due to the flavor-violating Z⁰ decays

- Figure 117: Second-order charged interactions that can explain the observed rare kaon decays.
 - One can estimate the V_{td} element of the CKM matrix:

$$0.007 < \left| V_{td} \right| < 0.030$$

Unification condition and boson masses

Comparing vertices involving γ , W[±] and Z⁰, one can conclude that they are not independent and can be expressed via the same constant

For a consistent electroweak theory, two conditions are introduced:

The unification condition relates coupling constants:

$$\sqrt{\frac{\pi \cdot \alpha_{em}}{2}} = g_W sin \theta_W = g_Z cos \theta_W$$
(162)

 θ_W is the *weak mixing angle*, or *Weinberg angle*:

$$\cos\theta_W = \frac{M_W}{M_Z} \tag{163}$$

The anomaly condition relates electric charges:

$$\sum_{l} Q_l + 3 \sum_{q} Q_q = 0 \tag{164}$$

In the zero-range approximation (see Eq.(146)):

$$\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{M_W^2} \Rightarrow M_W^2 = \frac{g_W^2 \sqrt{2}}{G_F} = \frac{\pi \alpha}{\sqrt{2} G_F \sin^2 \theta_W}$$
(165)

If we introduce also the neutral current coupling (in low energy zero-range approximation, as usual):

$$\frac{G_Z}{\sqrt{2}} = \frac{g_Z^2}{M_Z^2}$$
(166)

the weak mixing angle can then be expressed as

$$\frac{G_Z}{G_W} = \frac{g_Z^2 M_W^2}{g_W^2 M_Z^2} = \sin^2 \theta_W$$
(167)

From measurements of rates of charged and neutral currents reactions,

$$\sin^2 \theta_W = 0.227 \pm 0.014$$

which allowed to predict masses of W (using Eq.(165)) and hence Z, as:

$$M_W = 78.3 \pm 2.4 \ GeV/c^2; M_Z = 89.0 \pm 2.0 \ GeV/c^2$$

The most recent result (at Z^0 peak):

$$\sin^2 \theta_W = 0.23122 \pm 0.00015$$
 (168)

However, the most precise value for mass ratio is somewhat different:

$$1 - \frac{M_W^2}{M_Z^2} = 0.22318 \pm 0.0052$$

The difference comes from higher-order diagrams:

Figure 118: Examples of higher order contributions to inverse muon decay From higher order corrections, the prediction for the top-quark mass was: $m_t = 170 \pm 30 \ GeV/c^2$ (169)

Direct observation gives the value of $m_t = 174.2 \pm 3.3 \ GeV/c^2$

Predictions for W, Z and top masses were the most impressive successes of the electroweak theory

In any process in which a photon is exchanged, a Z⁰ boson can be exchanged as well; in addition, Z⁰ couples to neutrinos:

Figure 119: Z^0 and γ couplings to leptons and quarks

Example: reaction $e^+e^- \rightarrow \mu^+\mu^-$ has two dominant contributions:

Figure 120: Dominant contributions to the e⁺e⁻ annihilation into muons

With simple dimensional arguments one can estimate the cross section for the photon- and Z-exchange process *at low energy*:

$$\sigma_{\gamma} \approx \frac{\alpha^2}{E^2} \qquad \sigma_Z \approx G_Z^2 E^2$$
 (170)

From Eq.(170), ratio of σ_Z and σ_γ is:

$$\frac{\sigma_Z}{\sigma_\gamma} \approx \frac{E^4}{M_Z^4} \tag{171}$$

At low energies, photon exchange dominates. At high energies ($E=M_Z$), this low-energy approximation fails.

Figure 121: Total cross sections of e^+e^- annihilation

 \odot Z⁰ peak is described by the Breit-Wigner formula:

$$\sigma(e^{+}e^{-} \to X) = \frac{12\pi M_{Z}^{2}}{E_{CM}^{2}} \left[\frac{\Gamma(Z^{0} \to e^{+}e^{-})\Gamma(Z^{0} \to X)}{(E_{CM}^{2} - M_{Z}^{2})^{2} + M_{Z}^{2}\Gamma_{Z}^{2}} \right]$$
(172)

Here Γ_Z is the total Z⁰ decay rate, and $\Gamma_Z(Z^0 \rightarrow X)$ are decay rates to other final states.

Height of the peak (at $E_{CM}=M_Z$) is then proportional to the product of branching ratios:

$$B(Z^{0} \to e^{+}e^{-})B(Z^{0} \to X) \equiv \frac{\Gamma(Z^{0} \to e^{+}e^{-})}{\Gamma_{Z}}\frac{\Gamma(Z^{0} \to X)}{\Gamma_{Z}}$$
(173)

Fitted parameters of the Z^0 peak:

$$M_Z = 91.187 \pm 0.007 \ GeV/c^2$$

$$\Gamma_Z = 2.490 \pm 0.007 \ GeV$$
(174)

Fitting the peak with Eq.(172), not only M_Z and Γ_Z can be found, but also partial decay rates:

$$\Gamma(Z^0 \to hadrons) = 1.741 \pm 0.006 \ GeV \tag{175}$$

$$\Gamma(Z^0 \to l^+ \bar{l}) = 0.0838 \pm 0.0003 \ GeV$$
 (176)

♦ Decays $Z^0 \rightarrow l^+l^-$ and $Z^0 \rightarrow hadrons$ account for only about 80% of all Z^0 decays

Remaining decays are those containing only neutrinos in the final state

$$\Gamma_{Z} = \Gamma(Z^{0} \rightarrow hadrons) + 3\Gamma(Z^{0} \rightarrow l^{+}l^{-}) + N_{v}\Gamma(Z^{0} \rightarrow v_{l}\overline{v_{l}})$$
(177)

From Eqs.(174)-(176):

Λ

$$N_{\rm v} \Gamma(Z^0 \to v_l \overline{v_l}) = 0.498 \pm 0.009 \ GeV$$

Decay rate to neutrino pairs is calculated from diagrams of Figure 119:

$$\Gamma(Z^0 \to \nu_l \overline{\nu_l}) = 0.166 \ GeV \tag{178}$$

which means that $N_v \approx 3$. More precisely,

$$N_{\rm v} = 2.994 \pm 0.011 \tag{179}$$

- There are no explicit restrictions on number of generations in the Standard Model
- However, analysis of Z⁰ line shape shows that there are 3 and only 3 kinds of <u>massless</u> neutrinos.
 - If neutrinos are assumed having negligible masses as compared with the Z⁰ mass, there must be only THREE generations of leptons and quarks within the Standard Model.

Figure 122: LEP electron-positron collider at CERN (1989-2000)

Gauge invariance and the Higgs boson

- Renormalizable theories are gauge invariant theories
 - Sauge transformation: certain alteration of a quantum field variables that leave basic properties of the field unchanged; a symmetry transformation
 - There are several forms of gauge invariance corresponding to different interactions
- In QED, Schrödinger equation must be invariant under the phase transformation of the wavefunction:

$$\psi(\vec{x},t) \to \psi'(\vec{x},t) = e^{iq\alpha(\vec{x},t)}\psi(\vec{x},t)$$
(180)

Here $\alpha(\dot{x}, t)$ is an arbitrary continuous function.

If a particle is free, then

$$i\frac{\partial\psi(\dot{x},t)}{\partial t} = -\frac{1}{2m}\nabla^2\psi(\dot{x},t)$$
(181)

- * Transformed wavefunction $\psi'(\dot{x}, t)$ can not be a solution of the Schrödinger equation (181)
- Gauge principle: to keep the invariance condition satisfied, a minimal field should be added to the Schrödinger equation, i.e., an interaction should be introduced
- In QED, the transition from one electron state to another with different phase, $e^- \rightarrow e^-$ demands emission (or absorption) of a photon: $e^- \rightarrow e^-\gamma$

More generally, in the electroweak theory, transformations like

$$e \rightarrow v_e \qquad v_e \rightarrow e \qquad e \rightarrow e \qquad v_e \rightarrow v_e$$

lead via the gauge principle to interactions

$$e^{-} \rightarrow v_{e}W^{-}$$
 $v_{e} \rightarrow e^{-}W^{+}$ $e^{-} \rightarrow e^{-}W^{0}$ $v_{e} \rightarrow v_{e}W^{0}$

 \odot W⁺, W⁻ and W⁰ are corresponding spin-1 gauge bosons.

While W⁺ and W⁻ are the well-known charged currents, W⁰ as such has not been observed experimentally

• Electroweak unification regards both Z^0 and γ as mixtures of W^0 and yet another *neutral boson* B^0 :

$$\gamma = B^{0} \cos \theta_{W} + W^{0} \sin \theta_{W}$$

$$Z^{0} = -B^{0} \sin \theta_{W} + W^{0} \cos \theta_{W}$$
(182)

The corresponding gauge transformation is:

$$\psi_l(\vec{x},t) \to \psi_l'(\vec{x},t) = e^{ig_Z y_l \alpha(\vec{x},t)} \psi_l(\vec{x},t)$$
(183)

Here *l* stands for electron or neutrino and y_l are corresponding constants

Introduction of B⁰ leads to extra vertices

$$e^- \to e^- B^0 \qquad \nu_e \to \nu_e B^0$$

with new couplings $g_{Z}y_{e^{-}}$ and $g_{Z}y_{v_{e}}$. If the unification condition (162) is satisfied, first mixture in (182) indeed has the coupling of a photon.

- Electroweak theory can be made gauge-invariant by introducing neutral bosons W⁰ and B⁰.
 - Or Generally, experimental data agree with gauge invariant electroweak theory predictions.
- However, gauge invariance implies that spin-1 bosons have <u>zero</u> <u>masses</u> if they are the only bosons in the theory (photon and gluon nicely comply with this requirement)

one more field should exist

The Higgs Boson

The scalar Higgs field solves the problem by introducing a yet another particle, the Higgs boson

- *Higgs boson* H⁰ is a spin-0 particle
- Higgs field has a **non-zero** value ϕ_0 in vacuum

Figure 123: Comparison of the electric and Higgs fields

^(◎) The vacuum value ϕ_0 is not gauge invariant \Rightarrow hidden gauge invariance, or spontaneously broken symmetry.

❖ Vacuum hence is supposed to be populated with massive Higgs bosons ⇒ when a gauge field interacts with the Higgs field it acquires mass (e.g. W and Z bosons become massive) In the same manner, fermions acquire masses by interacting with Higgs bosons:

Figure 124: A basic vertex for Higgs-fermion interactions

The coupling constant is related to the fermion mass:

$$g_{Hff}^2 = \sqrt{2}G_F m_f^2 \tag{184}$$

- The mass of the Higgs itself is not predicted by the theory, only its couplings to other particles are predicted (Eq.(184))
- Existence of the Higgs has not been (yet) confirmed experimentally
 - On the set of the s

Possible signatures of the Higgs:

a) If H^0 is lighter than Z^0 (rather, $M_H\!\!\leq\!\!50~GeV/c^2$), then Z^0 can decay by

$$Z^{0} \rightarrow H^{0} + I^{+} + I^{-}$$
 (185)
 $Z^{0} \rightarrow H^{0} + v_{I} + \overline{v_{I}}$ (186)

But the branching ratio is very low:

$$3 \times 10^{-6} \le \frac{\Gamma(Z^0 \to H^0 l^+ l^-)}{\Gamma_{tot}} \le 10^{-4}$$

With the LEP statistics, they still should have been detectable; since the reactions (185) and (186) have not been observed, the *lower limit* is $M_H>58~GeV/c^2$

 b) If H⁰ is significantly heavier than 60 GeV/c², it can be produced in e⁺e⁻ annihilation at higher energies:

 $e^+ + e^- \rightarrow H^0 + Z^0$

Figure 125: "Higgsstrahlung" in e^+e^- annihilation

- In such a reaction, Higgs with mass up 90 GeV/c² could have been detected by observing H⁰ decaying into a bb pair and Z to a qq pair (4 jets, of which 2 are *b-tagged*)
- In the closing days of LEP, ALEPH experiment reported a couple of such candidate Higgs events. Other experiments saw no events of this kind.

Up-to-date limit established by LEP is:

 $M_H > 114.4 \ GeV/c^2$ (188)

(187)

c) Higgs with masses up to 1 TeV can be observed at the future proton-proton collider LHC at CERN:

$$p + p \rightarrow H^0 + X \tag{189}$$

where H⁰ is produced in electroweak interaction between the quarks

Figure 126: An example of Higgs production process at LHC

Due to the heavy background, good signatures have to be considered:

 \bigcirc If M_H > 2M_Z, then the dominant decay modes are:

$$H^0 \rightarrow Z^0 + Z^0 \tag{190}$$

$$\mathrm{H}^{0} \to \mathrm{W}^{-} + \mathrm{W}^{+} \tag{191}$$

Figure 127: Branching ratios for the main decays of the SM Higgs boson

The most clear signal is when both Z^0 decay into electron or muon pairs: $H^0 \rightarrow I^+ + I^- + I^+ + I^-$ (192)

This will mean 200 GeV/ $^2 \le M_H \le 500$ GeV/ c^2 , but only 4% of all decays

If M_H < 2M_W, the dominant decay mode is $H^0 → b + \overline{b}$

but this gives indistinguishable signal at LHC. Another mode is

$$H^0 \to \gamma + \gamma \tag{194}$$

Figure 128: The dominant mechanisms for the decay (194)

Branching ratio of this kind of processes is about 10^{-3}

The neutral Higgs is the minimal requirement; there might exist more complicated variants, including charged higgs-particles. None have been detected so far. (193)