An Introduction to
High Energy Heavy Ion Physics

What is high energy heavy ion physics
– QCD and the Quark Gluon Plasma
– Heavy ion collisions and experiments

Results from RHIC
– Bulk physics: stopping, particle production, flow
– Jets and heavy quarks

Outlook
– New theoretical tools
– LHC and ALICE

2nd talk will focus on ALICE and the TPC
What is high energy heavy ion physics

1 small bang in the STAR experiment
QCD at high energies

- **Low energy QCD** (the universe today)
 - Confinement
 - Nucleons (hadrons) are relevant degrees of freedom
 - Chiral symmetry is spontaneously broken by vacuum condensates
 - Chiral partners have different mass, pion is “goldstone boson”
 - Lattice QCD (the strong coupling constant is large).

- **High energy QCD** (early universe <10^{-6} s after big bang)
 - Deconfinement (Quark Gluon Plasma)
 - Quarks and gluons are relevant degrees of freedom
 - Chiral symmetry restored
 - Chiral partners have similar mass
 - Perturbative QCD, Color Glass Condensate (gluon saturation)
 - NEW! Anti-de-Sitter/Conformal Field Theories (weakly coupled string theory <-> strongly coupled non-perturbative “QCD”)
Confinement

The strong interaction potential

- Compare the potential of the strong & e.m. interaction

\[V_{em} = -\frac{c}{r} \quad V_{s} = -\frac{c'}{r} + kr \]

- Confining term arises due to the self-interaction property of the colour field. \(k \approx 1 \text{GeV/fm} \approx 10 \text{ tons}! \)

\[q_1 \quad q_2 \]

a) QED or QCD (\(r < 1 \text{ fm} \))

\[q_1 \quad q_2 \]

b) QCD (\(r > 1 \text{ fm} \))

Charmo-
At high temperatures (T>170MeV) and/or net-baryon densities (∼ρ_{proton}) we expect a phase transition to a phase where the quarks and gluons are deconfined: The Quark Gluon Plasma (QGP)
The Hagedorn temperature

If this exponential growth continues, as proposed by Hagedorn, there is a limiting temperature for hadronic matter where the energy density becomes infinite (if there was no phase transition). \(T_{\text{Hagedorn}} = 200-300 \text{ MeV} \).
Lattice QCD results

(Numerical non-perturbative)

QCD energy density

![Graph showing QCD energy density](image1)

- **Theory**: \[\epsilon_{QCD} = \frac{\pi^2}{30} \left(2\times8 + \frac{7}{8} \right) 2\times2\times3\times3 T^4 \]
- **Explanation**: At \(T \sim T_c \), the strong potential is screened so e.g. c+c-bar states can disassociate.

Heavy quark potential

- **Graph**: Shows heavy quark potential at different temperatures.
- **Discussion**: At \(T \sim T_c \), the strong potential is screened so heavy quark states can disassociate.

Gluon spin and color

Quark spin, color, and flavor
Heavy ion collisions: The study of high energy QCD

The evolution of a heavy ion collision

- By colliding heavy ions it is possible to create a large ($\gg 1\text{fm}^3$) zone of hot and dense QCD matter
- Experimentally only the final state particles are observed
 - NB! Photons and leptons can act as probes of early stages
- Theoretically LQCD only describes a stationary thermalized state. NEED dynamical model description(s)!
Theoretical descriptions of heavy ion collisions

Some examples of ingredients:
- Hard processes (jets): perturbative QCD
- Initial state: Color glass condensate / Glasma
- Hydrodynamic expansion
- Hadronization: Statistical a la Hagedorn.
- Lund string model for soft physics

Most models are phenomenological, so a large degree of tuning is possible!
RHIC is the first heavy ion collider in the world. Operational since 2000. Max beam energy: $\sqrt{s_{NN}}=200\text{GeV}$

2 independent rings (good for d+Au).
The 4 experiments at RHIC

- PHOBOS
- BRAHMS
- STAR
- Lund group
Examples of experiments: BRAHMS and PHENIX

BRAHMS (50 people):
Specialized detector
Combining many settings allows charged π, K, p to be measured over large rapidity range: $0 < y < 3.5$

PHENIX (300 people):
General purpose detector
Big acceptance around $y=0$
Measures charged hadrons and photons and leptons
Lund group built pad chambers
Centrality (ex. for Au+Au):

- **Participants** = 2*197 - **Spectators**

Rapidity (Boost invariant) & Pseudo-rapidity (No PID):

\[y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right) \]

\[\eta = -\log \left[\tan \left(\frac{\theta}{2} \right) \right] \]

Accelerators: AGS (BNL), SPS (CERN), RHIC (BNL), LHC (CERN). \(\sqrt{s_{NN}} = 5, 17, 200, 5500 \text{ GeV} \)
Soft physics: $p_T < 2\text{GeV/c}$ and light quarks: u, d, s

99% of particles
Peripheral Event
From real-time Level 3 display.

color code ⇒ energy loss
Mid-Central Event
From real-time Level 3 display.
Central Event
From real-time Level 3 display.
Due to baryon number conservation the kinetic energy loss of the incoming nuclei can be determined.

Extrapolating to beam rapidity one finds that ~75% of the energy is available for particle production.

\[
\text{Net-protons} = \text{Protons} - \text{Anti-protons}
\]

\[
\text{Net-B (conserved) at RHIC}
\]
“Measured” initial energy density

Bjorkens hydrodynamic formula for thermalized energy density in terms of measured transverse energy E_T

$$
\varepsilon_{Bj} = \frac{1}{\pi R^2} \frac{1}{c\tau_0} \left(\frac{dE_T}{dy} \right)
$$

PHENIX: Central Au Au yields

$$
\langle \frac{dE_T}{d\eta} \rangle_{\eta=0} = 503 \pm 2 \text{ GeV}
$$

Formaldehyde (thermalization) time?

\[\varepsilon_{Bj} \sim 23.0 \text{ GeV/fm}^3\]

\[\varepsilon_{Bj} \sim 4.6 \text{ GeV/fm}^3\]
Charged multiplicity $dN_{ch}/d\eta$ at mid-rapidity ($\eta \sim 0$) vs models

Model predictions at $\sqrt{s_{NN}} = 200$GeV

- HIJING ($dN_{ch}/d\eta$, b<3fm)
- HIJING+ZPC+ART (b=0)
- RQMD (b=3fm)
- UrQMD (b<3fm)
- VNI+UrQMD (b<1fm)
- HSD, VNI+HSD (b<2fm)
- NEXUS (b<2fm)
- DPM (Pb+Pb)
- DPMJET (Pb+Pb, 3%)
- SFM (5%)
- LEXUS (5%)
- EKRT saturation (b=0)
- Hydro+UrQMD (b=0)
- Fireball (~5%)
- McLV ($dN/d\eta$, b=0)

Model predictions before RHIC generally overpredicted $dN/d\eta$. Data shows simple power law increase: $dN/d\eta \sim k_1 \sqrt{s_{NN}}^{k_2}$ with no signs of discontinuity (no bump)
Charged particle multiplicity scaling with N_{part}

- Charged multiplicity per N_{part} is almost flat
- Why is there no effect of multiple binary collisions?
 - Energy momentum conservation?
 - Or gluon saturation?
• With increasing energy/momentum resolution the number of (small-x) partons in a hadron/nucleus grows rapidly (dominate soft physics)
• At the saturation scale Q_s partons begin to overlap in the transverse area of the nucleus ($\sim A^{1/3}$), which prevents further growth of the parton density
• Color-Glass-Condensate (initial state): The many partons can be treated as semi-classical fields so initial condition at RHIC/LHC can be calculated
• Is this the general state of very high energy nucleons and nuclei?
Identified particle ratios:
\(T \) and \(\mu_B \) at freezeout

Particle ratios are well described by statistical models when decay from hadronic resonances are taken into account (only QCD input are the masses and decays).

The temperature is consistent with what we expect from Lattice QCD calculations for the transition temperature.

1. Generate hadrons with weights: \(\exp\left(-\frac{(m+\mu_B)}{T}\right) \)
2. Decay strongly
3. Compare to data
The QCD phase diagram with the measured T and μ_B

The temperature saturates at $T \approx 160$ MeV indicating that the system has crossed the phase boundary.

But $p+p$ ratios can be described with a similar (canonical) formalism and T! So it is a hadronization attribute! (??)

$T_{\text{lim}} = 161 \pm 4$ MeV

A. Andronic, P. Braun-Munzinger, J. Stachel, nucl-th/0511071

Because of the simple beam-energy systematics statistical models have predictive power!

The statistical description of particle ratios is also good for lower energies: AGS and SPS
Elliptic flow (v_2) unique in heavy ion collisions

Fourier decomposition:
\[\frac{dN}{d\phi} = 1 + 2v_2\cos(2\Delta\phi) \]

- Initial spatial anisotropy
- Strong pressure gradients
- v_2 Azimuthal anisotropy
- Sensitivity to early expansion
v2 at RHIC: Maximal flow and low viscosity

Hydrodynamic predicts v_2 (for $p_T < 2\text{GeV/c}$)

Strong interactions are really strong => use hydro

To generate high flow one needs early interactions

Low viscosity => Perfect fluid

Where is QCD dynamics? v_2 not very sensitive to EOS.
The system created at RHIC

- 75% of kinetic energy goes into the system (stopping)
- Initial energy density > Lattice requirement (transverse energy)
- System interacts early and strong – thermalization? (v2)
- T_{chemical} \sim \text{Lattice phase transition } T \text{(particle ratios)}

The matter created at RHIC does not behave as a weakly interacting gas, but as a strongly interacting perfect liquid: QGP -> sQGP

There are indications that system has been in plasma phase but no smoking gun!
Hard probes (pQCD): $p_T > 2\text{GeV}$ and heavy quarks:
The nuclear modification factor for pions

\[R_{AA} = \frac{d^2 N^{AA}/dp_T dy}{\langle N_{\text{bin}} \rangle d^2 N^{NN}/dp_T dy} \]
The nuclear modification factor for direct photons

- Direct photons do not interact with final state hadronic matter!
- At low p_T photons are dominantly decay photons, e.g., $\pi^0 \rightarrow 2\gamma$
- Direct photons confirm binary scaling of hard processes!
Disappearance of the away side jet indicates final state effect

Most jets are created back to back!

4 < p_T^{trig} < 6 GeV/c

p_T^{assoc} > 2 GeV/c
Disappearance of the away side jet indicates final state effect

Most jets are created back to back!

4 < \(p_T^{(\text{trig})} \) < 6 GeV/c

\(p_T^{(\text{assoc})} > 2 \) GeV/c

Away side suppression
Au+Au vs d+Au

Hot vs cold nuclear matter

No suppression seen in d+Au

\rightarrow Final state effect not seen at lower energy!

Quarks and gluons loose/radiate energy as they propagate through the dense medium!

They probe the created matter
Elliptic flow at high pT: kinetic energy and quark scaling

Baryons

Mesons

PHENIX preliminary

Quark recombination into hadrons?
Quark degrees of freedom?
Suppression patterns are remarkably similar at SPS and RHIC when measured with the nuclear modification factor R_{AA}

Cold matter suppression (absorption) larger at SPS, hot matter suppression (screening) larger at RHIC, balance?

c+c-bar recombination cancels additional suppression at RHIC?

LHC will give the answer(?)
Summary of hard physics

- High p_T jets are suppressed indicating that they suffer a large energy loss in the medium
 - Medium is dense and strongly interacting
- Quark degrees of freedom
- J/ψ puzzle: Suppression pattern similar at SPS and RHIC
- Upgrade of RHIC to RHIC-II (higher luminosity) and upgrades of experiments with new detectors e.g. vertex
 - Focus on direct photons and direct ID of heavy quarks (c, b)
- Problem: QGP or not QGP is a question for theorists
 - Need better theory!
New theoretical tool?:

String theory can describe QCD

High Energy Heavy Ion - test laboratory for string theory?

- **Shear viscosity** (prediction of low viscosity – universal limit?)

 “Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics” *P.K. Kovtun, D.T. Son, and A.O. Starinets*

- **Quenching parameter**

 “Calculating the jet quenching parameter from AdS/CFT” *Liu, Rajagopal, and Wiedemann*

- **Thermal particle production**

 Unruh mechanism, black hole radiation,…. *Karzeev, Satz*
Conclusions

A new phase of QCD matter has been observed at RHIC and it has been possible to determine some of the properties
 – The energy density and temperature is consistent with LQCD predictions for a QGP
 – The matter created is interacting early and strong
 – It is interacting so strong that it absorbs jets
 – It shows quark degrees of freedom (recombination?)

Questions for LHC
 – Will elliptic flow be higher than hydro at LHC?
 – What will the suppression pattern be for light hadrons, heavy quarks and for fully reconstructed jets at LHC
 – Recombination model predicts very large effects at LHC where there are many more mini jets
 – And possible new effects!
LHC and ALICE

To boldly go where no man or woman has gone before...
Backup slides
Heavy Quark \((c, b)\) Energy Loss and Flow in Au+Au

Indirectly measured: Measure single electron spectra and correct for background.

No suppression at low pT. Suppression observed for pT > 3 GeV/c (smaller than for light quarks).

Heavy quarks also has elliptic flow.

Heavy quarks interact with the medium! Further information / constraints for theory.
5d Anti de-Sitter space \leftrightarrow Conformal FT (QCD like)

$ds^2 = L^2 z^{-2} (dz^2 + dx^2 + dy^2 + dw^2 - dt^2)$

J. Maldacena 1998 (top cite +4800)

Close String \leftrightarrow 1-loop Open String

Endpoint of an open string on the boundary \leftrightarrow Massive particle

Gravity \Rightarrow Gauge theory

Large/small dist. \Rightarrow AdS/CFT corresp.

AdS$_5$
- AdS$_5$ BH
- L^4/α'^2
- $\pi L^3/2 G_5$
- Horizon radius

CFT
- Thermal state $g_{YM}^2 N$
- N^2
- Temperature $T>0$

E. Witten hep-th/9802150

10.3.2008

Introduction to High Energy Heavy Ion Physics
P. Christiansen (Lund)
The ALICE experiment at LHC

Global detectors: V0, T0, FMD

Combines the best of STAR: TPC and full azimuthal coverage and PHENIX: Photon/lepton detectors and also has: inner tracker
Proton-proton physics with ALICE (from June 2008)

- The first physics with ALICE will be proton-proton collisions:
 - Provides "reference" data to understand heavy-ion collisions.
 - **Genuine proton-proton physics** where ALICE is unique or competitive
 - low momentum cutoff – due to low magnetic field and small material budget
 - particle identification – unique in central region at LHC
 - ALICE reach p_T up to ~100GeV/c, ensuring overlap with other LHC experiments
 - **Proton data taking at several centre-of-mass energies** (0.9 TeV?, 2.4 TeV?, 5.5 TeV? and 14 TeV)

- Physics programme: interplay of non-perturbative vs. perturbative physics
 - Min. bias events global properties, constraints for underlying event in high P_T signals, pileup in rare triggers
 - Multi-parton interactions (high multiplicity pp events)
 - Heavy Flavours (b and c quarks) [TRD, muon arm and TPC/ITS]
 - Jet physics
 - Collision energy dependence of all the above
First p+p measurements with ALICE (and the TPC)

Pseudorapidity density $dN/d\eta$

CDF:

p_T spectrum

Charged tracks

CDF:

Multiplicity distribution

UA5:
Z. Phys 43, 357 (1989)

Mean p_T vs multiplicity

CDF:
The extrapolation is based on the saturation of the rapidity loss:

And that the fit function (which is a Gauss in p_z):

$$
\sum_{\pm} \exp \left[- \frac{\left(m_N \sinh(y) \pm \langle p_z \rangle \right)^2}{2 \sigma_{p_z^2}} \right]
$$

describes data so far.
Extrapolated charged particle multiplicities from RHIC

Rapidity shifted AuAu Data from PHOBOS

Limiting fragmentation (same shape when plotted as η-y_{beam})
Results from RHIC

A more detailed overview of the results from RHIC can be found in the experimental “white papers” from RHIC:

Nuclear Physics A757, August 2005
AIP: The Perfect Liquid at RHIC
Top physics story of 2005
Extrapolated elliptic flow (v_2) at LHC

Energy dependence of v_2

Compilation of data from

Elliptic Flow also shows limiting fragmentation
Summary and conclusion

- Results from RHIC shows that the system formed is dense and strongly interacting
- High p_T partons and heavy quarks loose energy through interaction with the medium so that medium properties can be determined
- There are many naïve predictions for LHC based on experimentally observed scaling that if broken could give first indications of new physics
- Hard physics systematics from RHIC-II and LHC will provide more information on the mechanism of suppression and properties of the medium
R_{cp} Scaling - Comparison of peripheral and central yields

Two groups ($2<p_T<6\text{GeV}/c$):

- π, K_s, K^\pm, K^*, ϕ ↔ mesons
- p, Λ, Ξ, Ω ↔ baryons

R_{cp} splitting between baryons and mesons comes naturally in the recombination approach (next slide)
Recombination at LHC(?)

- Normal pQCD particle production
 - 1 parton → many partons → many hadrons

- Recombination allows the many partons from different quarks to recombine! \(p = \sum p_{\text{partons}} \) (Baryon \(p > \) Meson \(p \))

- Njets increases at LHC => recombination region should change. Hwa and Yang (nucl-th/0603053) predicts \(p/\pi \sim 10 \) out to \(p_T \sim 20 \text{GeV/c} \) with no associated jet structure!
Quark vs gluon energy loss
(modified QM summary slide)

If jet quenching is due to radiative energy loss, gluons loose more energy than quarks.

Model calculations very interesting:
- 90% of p from gluons
- 40% of pi from gluons

Conclusions depends a lot on our p+p production model/understanding.