lll. Experimental methods

Before 1950s, cosmic rays were the source of high energy particles, and cloud
chambers and photoemulsions were the means to detect them.

The quest for heavier particles and more precise measurements lead to the
increasing importance of accelerators to produce particles and more complicated
detectors to observe them.

Figure 24: Large Hadron Collider at CERN
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Accelerators

Figure 25: The Cockroft-Walton
“‘generator” at CERN: accelerates
particles by an electrostatic field

» Basic idea of all accelerators:
apply voltage to accelerate
particles

Main varieties of accelerators are:

— Linear accelerators ( “linacs™)

— Cyclic accelerators (“cyclotrons”,
“synchrotrons”)
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Figure 26: The history of accelerators (by E.Wilson);
colors indicate different accelerator types
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Why do we need accelerators

Optic microscopes use photons to resolve “microscopic” structures;
electron microscopes “see” yet smaller structures; accelerators can do
even better

recall deBroglie’s relation: A=h/p = better resolution requires a “probe” of
higher momentum

accelerators produce particle beams of very high energy = allow us to study
structure of other particles, e.g. protons or neutrons

We are made of quite light particles, but elsewhere it the Universe
heavier particles are being produced

recall Einstein’'s E=mc? = if we want to create ourselves heavy particles,
we have to reach very high energies

accelerators allow us to create and study special particles that are not
normally available on Earth
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Linear accelerators
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Figure 27: A traveling-wave linear accelerator schematics

“» Linacs are used mostly to accelerate electrons

Electrons are accelerated along a sequence of cylindrical vacuum cavities

Inside cavities, an electromagnetic field is created with a frequency near 3,000
MHz (radio-frequency), the electric field along the beam axis (F=qE)

Electrons arrive into each cavity at the same phase as the electric wave

Oxana Smirnova Lund University 58



radio-freguency power Source

drift tubes cavity
M.

ian
SOUrce

Figure 28: Standing-wave linac

<+ Standing-wave linacs are used to accelerate heavier particles, like
protons

Typical frequency of the field is about 200 MHz

Drift tubes screen particles from the electromagnetic field for the periods when
the field has decelerating effect

Lengths of drift tubes are proportional to particles’ speed
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Figure 29: LINAC a Fermilab (400 MeV) - outside and inside
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Cyclic accelerators.
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Figure 30: Cyclotron, the first resonance
accelerator. Maximum energy for protons: 25 MeV.

— The vacuum chamber is placed inside a magnetic field B, perpendicular to the rotation
plane

— Dees (“D”) are empty “boxes” working as electrodes; inside the dees E=0 (F=q vxB)
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Figure 31: Schematic layout of a synchrotron

» Synchrotrons are the most widely used circular accelerators
— Particle beam is constrained in a circular path by bending dipole magnets (F=q vxB)

— Accelerating cavities are placed along the ring (F=¢E)
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Figure 32: Large Hadron Collider at CERN accelerates protons
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CERN Accelerators
(not to scale)
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Figure 33: Scheme of the accelerator complex at CERN
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Figure 34: Scheme of the Relativistic Heavy lon Collider (RHIC) accelerator
complex at BNL (left) and its RF cavity system (right).
RHIC accelerates ions, from protons to gold
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Figure 35: Tevatron accelerator chain at Fermilab.
Tevatron accelerates protons and antiprotons
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Charged particles which travel in a circular orbit with relativistic speeds
emit synchrotron radiation

Amount of energy radiated per turn is:

2p3.4
AE = LB (31)
3e,p

12
)

Here ¢ is electric charge of a particle, pP=vc , ys(1-B2 , and p is the

radius of the orbit.

For relativistic particles y=E/mc’ = energy loss increases as E*/m?
becoming very significant for high-energy light particles (electrons)

Radio-frequency power is limited = electron synchrotrons would
become extremely large (large p) to compensate for the synchrotron
radiation.
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From the standard expression for the centrifugal force, momentum of the
particle with the unit charge (¢g=7) in a synchrotron is

p=0.3Bp (/B]=Tesla, [p]=meters, [p]=GeV/c)

If the requirement is that p must be constant, the magnetic field B has to
Increase in order to achieve higher momentum.

Maximal momentum is therefore limited by both the maximal available
magnetic field and the size of the ring

For LHC, bend radius is ~2.8 km, and magnetic field of ~8.3 T is needed to
achieve the planned beam energy of 7 TeV

To keep particles well contained inside the beam pipe and to achieve
the stable orbit, particles are accelerated in bunches, synchronized
with the radio-frequency field

Analogously to linacs, all particles in a bunch have to move in phase with
the radio-frequency field.
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Requirement of precise synchronisation, however, is not very tight:
particles behind the radio-frequency phase will receive lower momentum
Increase, and other way around.

[toverard

theright) + ——p amount of energy boost

Electric Fosition

. 0 . .
Field Megative particles

- ahaad
e i
- an fime
[toward behind
Ehe left) =

Figure 36: Effect of the electric field onto particles in accelerator cavities
(phase stability)

Therefore all particles in a bunch stay basically on the same orbit,
slightly oscillating
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Figure 37: LHC dipole cross-section

ALIGHRENT TARGET

MAN QUADRLUPOLE ELS BARS

HEAT EXCHAMGER PIPE

SUPERINSUILA THOMN

SUFERCONDUCTING OO0LS.

EEAMPFL

SHRMKING CYLINDER 7 ME LVESSEL

IRDIN YOKE

VACUUM VESSEL

THERMAL SHIELD

ALILIARY BUS-BRRS

ALSTEMIIC STEEL COLLARS

BEAR SCREEN

IROK INSERT

INETRUBLENT ATICHN WiFES

FILLER PECE

CARCILE BLS-BARS

SUPPORT POST

Oxana Smirnova

Lund University

70



Heat Exchanger Pipe
Beam Pipe
Superconducting Coils

Helium-Il Vessel

Spool Piece . b i . V &/
Bus Bars Y -, e e, - Superconducting Bus-Bar

Iron Yoke

Non-Magnetic Collars

Vacuum Vessel
Quadrupole

Bus Bars Radiation Screen

Thermal Shield

The
15-m long
LHC cryodipole

Auxiliary
Bus Bar Tube

Protection Instrumentation
Diode Feed Throughs

Figure 38: LHC dipole weighs 30 tons
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Figure 39: Quadrupole (left) and sextupole (right) magnets

To keep particle beams focused, quadrupole and sextupole magnets are
placed along the ring and act like optical lenses
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Colliders vs fixed target machines

Depending on whether the beam is shooting into a stationary (“fixed”)
target, or is colliding with another beam, both linear and cyclic

accelerators are divided into two types:

“fixed-target” machines

“colliders” ("storage rings” in case of cyclic machines)

Figure 41: Scheme of a beam colliding with a fixed target; m, is the beam particle
mass and m; is the target material mass, E; is the beam energy

Centre-of-mass energy, i.e., energy available for particle production
during collisions of a beam of energy E; with a target, is :

ECM = Jm£c4+mfc4+2mt02EL (32)
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< Fixed-target £, increases only as square-root of £;! (Here m; and m,
are masses of the beam and target particles respectively)

Some fixed target accelerators:

Machine Type Particles Epeam (GeV)
Tevatron Il (Fermilab, lllinois, USA) synchrotron o 1000
SPS (CERN, Geneva, Switzerland) synchrotron p 450
SLAC (Stanford, California, USA) linac e 25

Much higher energies are achieved for protons compared to electrons,
due to smaller losses caused by synchrotron radiation.

Fixed-target machines can be used to produce secondary beams of neutral or
unstable particles.
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Figure 42: A possible neutrino factory
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Higher centre-of-mass energies can be achieved by colliding two

beams of energies £, and Ey (at an optional crossing angle 0), so that
Etym
Problem: smaller probability for particles to collide

En —86° SR A=

= 2E (Ep(1+ cosB) (33)

— o0

Figure 43: Scheme of colliding beams; E, and Eg are respective beam energies

Goal: achieve as high as possible Luminosity:.

2
r=AN F(0)~10°?...103%cm2s~! (34)
4nc?

— N : number of particles per bunch

—f : frequency of bunch collisions
— o : beam transverse size
—F(0) : reduction factor due to crossing angle
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Luminosity depends only on intensities and geometrical characteristics of the
colliding beams, but not on the nature of the reaction

LHC goal: £ of 10%* cm™s ™ at 7 TeV

Some colliders:

Machine In operation Particles Epeam (GeV)
KEKB (KEK, Tokyo, Japan) 1999- e, e’ 8,35
PEP-ll (SLAC, California, USA) 1999- e, et 9,3.1
LEP (CERN, Geneva, Switzerland) 1989-2000 e, e 105
HERA (Hamburg, Germany) 1992-2007 e,p 30, 920
Tevatron Il (Fermilab, lllinois, USA) 1987- P, P 1000
LHC (CERN, Geneva, Switzerland) 2008- P, P 7000
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Figure 44: Future International Linear Collider (ILC)

<+ Future accelerators will be dedicated to precision measurements:
have to provide electron-positron collisions at very high energies, up to
1TeV
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Figure 45: Application of accelerators outside HEP (by E.Wilson)
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