
Modern Experimental Particle Physics

I. Basic concepts, leptons, quarks and hadrons

- Particle physics studies elementary "building blocks" of matter and interactions between them.
- Matter consists of particles.
 - **Matter is built of particles called "fermions": those that have half-integer spin, e.g. 1/2; obey Fermi-Dirac statistics.
- Particles interact via forces.
 - Handle Interaction is an exchange of a force-carrying particle.
- Force-carrying particles are called gauge bosons (spin-1).

Units and dimensions

Particle energy is measured in electron-volts:

$$1 \text{ eV} \approx 1.602 \times 10^{-19} \text{ J}$$
 (1)

1 eV is energy of an electron upon passing a voltage of 1 Volt.

$$\Re$$
 1 keV = 10³ eV; 1 MeV = 10⁶ eV; 1 GeV = 10⁹ eV

The reduced *Planck constant* and the *speed of light*:

$$hbar{\pi} = h/2\pi = 6.582 \times 10^{-22} \text{ MeV s}$$
 (2)

$$c = 2.9979 \times 10^8 \text{ m/s}$$
 (3)

and the "conversion constant" is:

$$\hbar c = 197.327 \times 10^{-15} \,\text{MeV m}$$
 (4)

For simplicity, natural units are used:

$$hbar{\pi} = 1 \quad \text{and} \quad c = 1$$

thus the unit of mass is eV/c^2 , and the unit of momentum is eV/c

Four-vector formalism

Relativistic kinematics is formulated with four-vectors:

- \Re space-time four-vector: x=(t,x)=(t,x,y,z), where t is time and x is a coordinate vector (c=1 notation is used)
- \mathbb{H} momentum four-vector: $p=(E,p)=(E,p_x,p_y,p_z)$, where E is particle energy and p is particle momentum vector

Calculus rules with four-vectors:

4-vectors are defined as

contravariant.

$$A^{\mu} = (A^{\theta}, \vec{A}), B^{\mu} = (B^{\theta}, \vec{B}), \tag{6}$$

and covariant:

$$A_{\mathfrak{u}} = (A^{0}, \stackrel{\longrightarrow}{-A}), B_{\mathfrak{u}} = (B^{0}, \stackrel{\longrightarrow}{-B}). \tag{7}$$

X Scalar product of two four-vectors is defined as:

$$A \cdot B = A^{0} B^{0} - (\vec{A} \cdot \vec{B}) = A_{\mu} B^{\mu} = A^{\mu} B_{\mu}. \tag{8}$$

Scalar products of momentum and space-time four-vectors are thus:

$$x \cdot p = x^{0} p^{0} - (\dot{\vec{x}} \cdot \dot{\vec{p}}) = Et - (\dot{\vec{x}} \cdot \dot{\vec{p}})$$
 (9)

4-vector product of coordinate and momentum represents particle wavefunction

$$p \cdot p = p^{2} = p^{0} p^{0} - (\vec{p} \cdot \vec{p}) = E^{2} - \vec{p}^{2} \equiv m^{2}$$
 (10)

4-momentum squared gives particle's invariant mass

For relativistic particles, we can see that

$$E^2 = p^2 + m^2 \quad (c=1) \tag{11}$$

Forces of nature

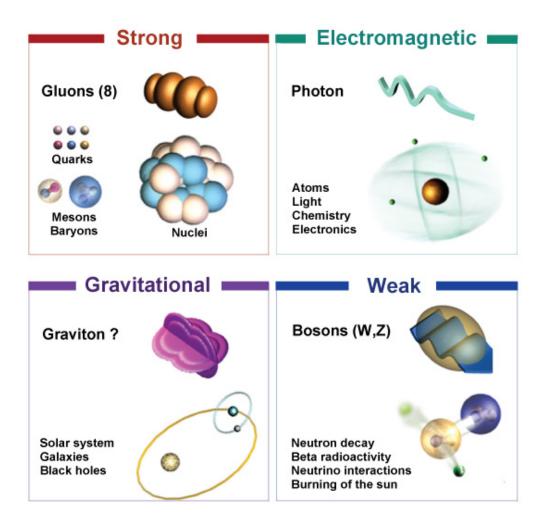


Figure 1: Forces and their carriers

Summary table of forces:

Force	Acts on/ couples to:	Carrier	Range	Strength	Stable systems	Induced reaction
Gravity	all particles Mass/E-p tensor	graviton G (has not yet been observed)	$\log F \propto 1/r^2$	~ 10 ⁻³⁹	Solar system	Object falling
Weak force	fermions hypercharge	bosons W ⁺ ,W ⁻ and Z	$< 10^{-17} \mathrm{m}$	10 ⁻⁵	None	β-decay
Electro- magnetism	charged particles electric charge	photon γ	$\log F \propto 1/r^2$	1/137	Atoms, molecules	Chemical reactions
Strong force	quarks and gluons colour charge	gluons g (8 different)	$10^{-15}{\rm m}$	1	Hadrons, nuclei	Nuclear reactions

The Standard Model

- Electromagnetic and weak forces can be described by a single theory ⇒ the "Electroweak Theory" was developed in 1960s (Glashow, Weinberg, Salam).
- Theory of strong interactions appeared in 1970s: "Quantum Chromodynamics" (QCD).
- * The "Standard Model" (SM) combines all the current knowledge.
 - ## Gravitation is VERY weak at particle scale, and it is not included in the SM. Moreover, quantum theory for gravitation does not exist yet.

Main postulates of SM:

- 1) Basic constituents of matter are *quarks* and *leptons* (spin 1/2)
- 2) They interact by exchanging gauge bosons (spin 1)
- 3) Quarks and leptons are subdivided into 3 generations

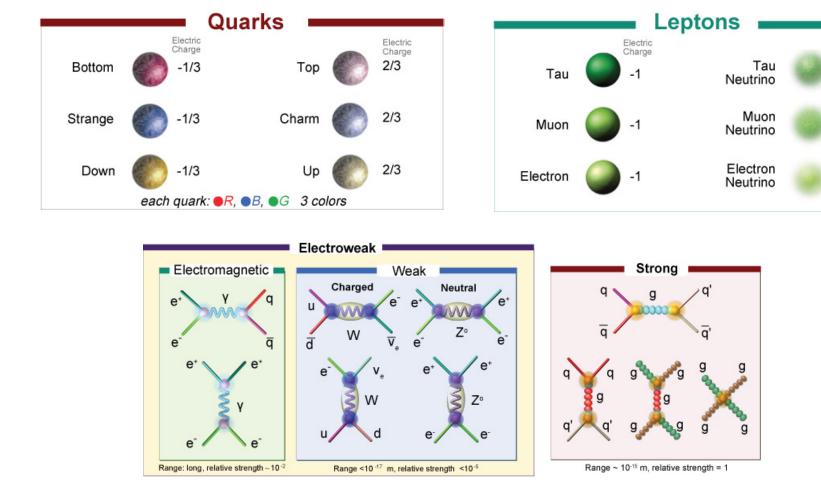


Figure 2: Standard Model: quarks, leptons and bosons

Electric

Charge

0

0

9

SM does not explain neither appearance of the mass nor the reason for existence of the 3 generations.

Antiparticles

Particles are described by wavefunctions:

$$\Psi(\vec{x},t) = Ne^{i(\vec{p}\vec{x} - Et)}$$
 (12)

 \dot{x} is the coordinate vector, \dot{p} - momentum vector, E and t are energy and time.

Particles obey the classical Schrödinger equation:

$$i\frac{\partial}{\partial t}\Psi(\vec{x},t) = H\Psi(\vec{x},t) = \frac{\vec{p}^2}{2m}\Psi(\vec{x},t) = -\frac{1}{2m}\nabla^2\Psi(\vec{x},t)$$
(13)

here
$$\dot{p} = \frac{h}{2\pi i} \nabla \equiv \frac{\nabla}{i}$$
 (14)

For relativistic particles, $E^2 = p^2 + m^2$ (11), and (13) is replaced by the Klein-Gordon equation (15):

$$-\frac{\partial^2}{\partial t^2}(\Psi) = H^2 \Psi(\vec{x}, t) = -\nabla^2 \Psi(\vec{x}, t) + m^2 \Psi(\vec{x}, t)$$
 (15)

 \diamond There exist *negative* energy solutions with $E_+<0$!

$$\Psi^*(\overset{>}{x},t) = N^* \cdot e^{i(-\vec{p}\overset{>}{x}} + E_+ t)$$

Here is a problem with the Klein-Gordon equation: it is second order in derivatives. In 1928, Dirac found the first-order form having the same solutions:

$$i\frac{\partial\Psi}{\partial t} = -i\sum_{i}\alpha_{i}\frac{\partial\Psi}{\partial x_{i}} + \beta m\Psi \tag{16}$$

Here α_i and β are 4×4 matrices, and Ψ are four-component wavefunctions: *spinors* (for particles with spin 1/2).

$$\Psi(\vec{x},t) = \begin{bmatrix} \Psi_{1}(\vec{x},t) \\ \Psi_{2}(\vec{x},t) \\ \Psi_{3}(\vec{x},t) \\ \Psi_{4}(\vec{x},t) \end{bmatrix}$$

Oxana Smirnova Lund University 11

Dirac-Pauli representation of matrices α_i and β :

$$\alpha_{i} = \begin{pmatrix} 0 & \sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

Here *I* is a 2×2 unit matrix, 0 is a 2×2 matrix of zeros, and σ_i are 2×2 *Pauli matrices*:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Also possible is *Weyl representation*:

$$\alpha_i = \begin{pmatrix} -\sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix} \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Dirac's picture of vacuum

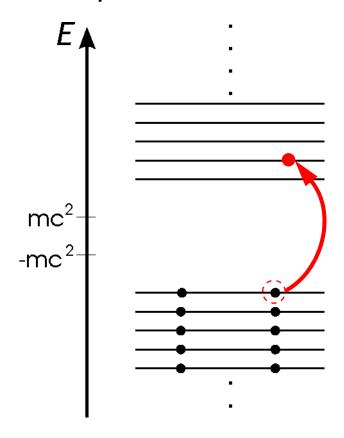


Figure 3: Fermions in Dirac's representation

- The "hole" created by appearance of an electron with "normal" energy is interpreted as the presence of electron's antiparticle with the opposite charge.
- © Every charged particle must have an antiparticle of the same mass and opposite charge, to solve the mystery of "negative" energy.

Feynman diagrams

In 1940s, Richard Feynman developed a diagram technique for representing processes in particle physics.

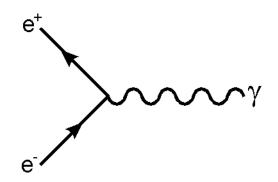


Figure 4: A Feynman diagram example: $e+e--> \gamma$

Main assumptions and requirements:

- ★ Time runs from <u>left to right</u>
- # Arrow directed towards the <u>right</u> indicates a particle, and otherwise antiparticle
- At every vertex, <u>momentum</u>, <u>angular momentum</u> and <u>charge</u> are conserved (but not necessarily energy)
- # Particles are shown by solid lines, gauge bosons by helices or dashed lines

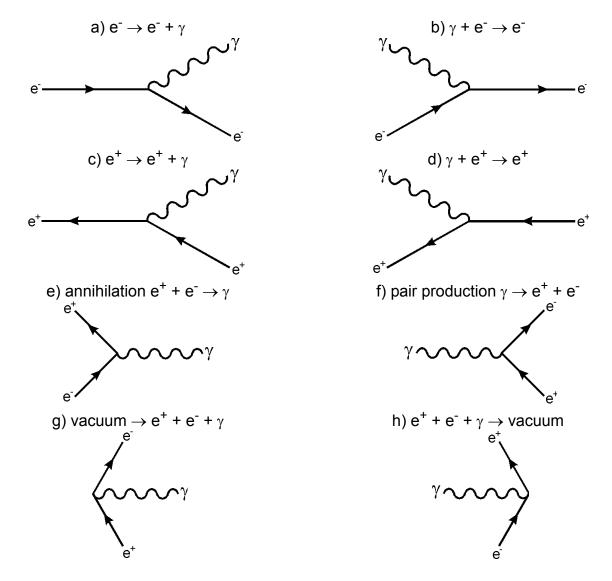


Figure 5: Feynman diagrams for **VIRTUAL** processes involving e^+ , e^- and γ \mathbb{H} A virtual process <u>does not</u> require energy conservation

A real process demands energy conservation, is a combination of virtual processes:

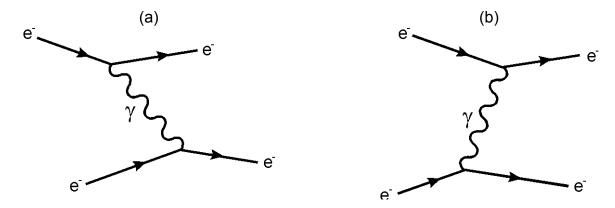


Figure 6: Electron-electron scattering, single photon exchange

Any real process receives contributions from all the possible virtual processes:

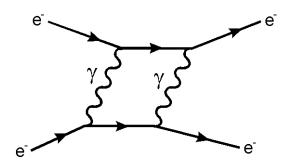


Figure 7: Two-photon exchange contribution

- ❖ Probability P(e¯e¯ → e¯e¯) = |M(1 γ exchange) + M(2 γ exchange) + M(3 γ exchange) +... |² (M stands for contribution, "Matrix element")
 - **X** Number of vertices in a diagram is called its *order*.
 - \mathbb{H} Each vertex has an associated probability proportional to a *coupling constant*, usually denoted as " α ". In discussed processes this constant is

$$\alpha_{em} = \frac{e^2}{4\pi\varepsilon_0} \approx \frac{1}{137} \ll 1 \tag{17}$$

- \mathbb{H} Matrix element for a two-vertex process is proportional to $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, where each vertex has a factor $\sqrt{\alpha}$. Probability for a process is $P=|M|^2=\alpha^2$
- \mathbb{H} For the real processes, a diagram of order n gives a contribution to probability of order α^n .
- Provided sufficiently small α , high order contributions are smaller and smaller and the result is convergent: $P(\text{real}) = |M(\alpha) + M(\alpha^2) + M(\alpha^3)...|^2$
- Often lowest order calculation is precise enough.

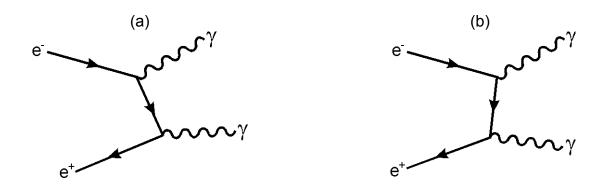


Figure 8: Lowest order contributions to $e^+e^- \to \gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^2$

Diagrams which differ only by time-ordering are usually implied by drawing only one of them

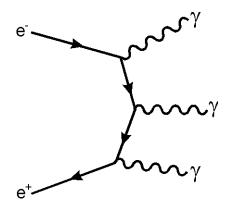


Figure 9: Lowest order of the process $e^+e^- \to \gamma\gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^3$

This kind of process implies 3!=6 different time orderings

Knowing order of diagrams is sufficient to estimate the ratio of appearance rates of processes:

$$R = \frac{Rate(e^{+}e^{-} \to \gamma\gamma\gamma)}{Rate(e^{+}e^{-} \to \gamma\gamma)} = \frac{O(\alpha^{3})}{O(\alpha^{2})} = O(\alpha)$$

This ratio can be measured experimentally; it appears to be $R = 0.9 \times 10^{-3}$, which is smaller than α_{em} , being only a first order prediction.

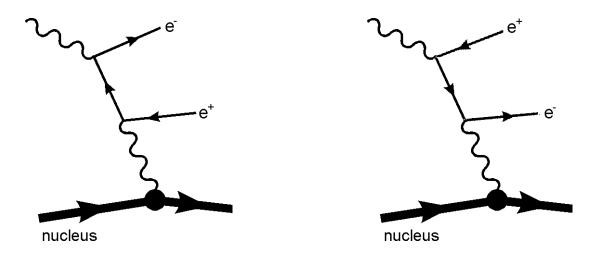


Figure 10: Diagrams that are not related by time ordering

 \Re For nuclei, the coupling is proportional to $Z^2\alpha$, hence the rate of this process is of order $Z^2\alpha^3$

Exchange of a massive boson

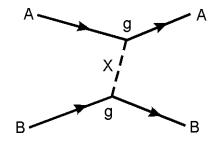


Figure 11: Exchange of a massive particle X

In the rest frame of particle A: $A(E_0, \stackrel{\rightarrow}{p}_0) \rightarrow A(E_A, \stackrel{\rightarrow}{p}) + X(E_\chi, -\stackrel{\rightarrow}{p})$

where
$$E_0 = M_A$$
, $p_0 = (0, 0, 0)$, $E_A = \sqrt{p^2 + M_A^2}$, $E_X = \sqrt{p^2 + M_X^2}$

From this one can estimate the maximum distance over which X can propagate before being absorbed: $\Delta E = E_X + E_A - M_A \ge M_X$, and this energy violation can exist only for a period of time $\Delta t \approx \hbar / \Delta E$ (Heisenberg's uncertainty relation), hence the *range of the interaction* is $r \approx R = \Delta t \, c = (\hbar / M_X)c$

- For a massless exchanged particle, the interaction has an infinite range (e.g., electromagnetic)
- In case of a very heavy exchanged particle (e.g., a W boson in weak interaction), the interaction can be approximated by a zero-range, or point interaction:

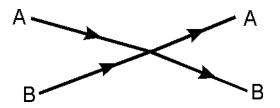


Figure 12: Point interaction as a result of $M_X \to \infty$

E.g., for a W boson: $R_W = \hbar / M_W = \hbar / (80.4 \text{ GeV/c}^2) \approx 2 \times 10^{-18} \text{ m}$

Leptons

Leptons are spin-1/2 fermions, not subject to strong interaction

$$\begin{pmatrix} v_e \\ -e \end{pmatrix}, \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix}, \begin{pmatrix} v_{\tau} \\ -e \end{pmatrix}$$

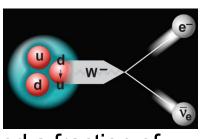
$$M_e < M_{\mu} < M_{\tau}$$

- \mathbb{H} Electron e^- , muon μ^- and tau-lepton τ^- have corresponding neutrinos v_e , v_μ and v_τ
- \mathbb{H} Electron, muon and tau have electric charge of -e; neutrinos are neutral
- **Neutrinos have *very small* masses (were thought to be massless)
- # For neutrinos, only weak interactions have been observed so far
- In addition to "usual" quantum numbers (spin, parity, electric charge etc), leptons carry *lepton numbers*

Antileptons are: positron e^+ , positive muon μ^+ , positive tau-lepton τ^+ , and antineutrinos:

$$\begin{pmatrix} e \\ -\overline{v}_e \end{pmatrix}, \begin{pmatrix} \mu \\ -\overline{v}_{\mu} \end{pmatrix}, \begin{pmatrix} \tau \\ -\overline{v}_{\tau} \end{pmatrix}$$

- * Neutrinos and antineutrinos differ by the *lepton number*. Leptons posses lepton numbers L_{α} =1 (α stands for e, μ or τ), and antileptons have L_{α} =-1
- Lepton numbers are <u>conserved</u> in <u>all</u> interactions!


Neutrinos can not be directly registered by any detector, there are only indirect measurements of their properties

 \mathbb{H} First indication of neutrino existence came from β -decays of nuclei, N:

$$N(Z,A) \rightarrow N(Z+1,A) + e^- + \overline{\nu}_e$$

 β -decay is simply one of the neutrons decaying:

$$n \rightarrow p + e^- + \frac{-}{v_e}$$

Experimentally, only proton and electron can be observed, and a fraction of energy and angular momentum is "missing".

Note that for the sake of the lepton number conservation, electron must be accompanied by an electron-type <u>anti</u>neutrino!

The \overline{v}_e mass can be estimated from the electron energy in the β -decay:

$$m_e \le E_e \le \Delta M_N - m_{ve}^-$$

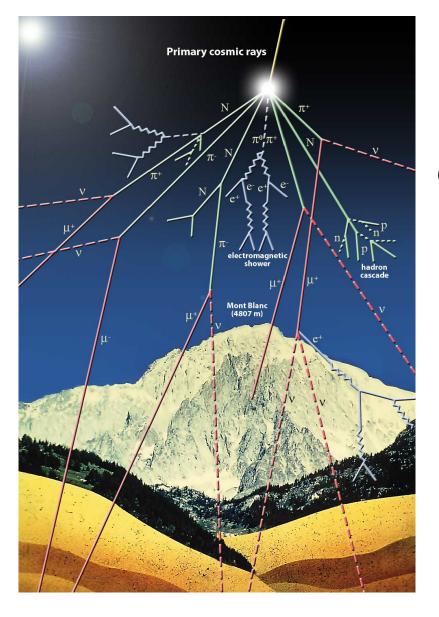
Current results from the tritium decay indicate a very small upper limit:

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{v}_{e} \qquad m_{ve}^{-} \le 3 \text{ eV/c}^{2}$$

Recently observed neutrino mixing suggests non-zero mass

An inverse β -decay (neutrino "capture") also takes place:

$$v_e + n \rightarrow e^- + p \tag{18}$$


or $\frac{\overline{v}_e + p \rightarrow e^+ + n}{(19)}$

Probabilities of these processes is very low, therefore to register any, one needs a very intense flux of neutrinos. Nevertheless, this was the process used for neutrino discovery (1956)

Antiparticles naturally accompany particle production in order to satisfy respective conservation laws

positrons are produced even in thunderstorms...

... but annihilate with much more abundant matter particles

Muons are readily observed in cosmic rays

Cosmic rays have two components:

- 1) *primaries*, which are high-energy particles coming from the outer space, mostly hydrogen nuclei
- 2) secondaries, the particles which are produced in collisions of primaries with nuclei in the Earth atmosphere; muons belong to this component

Figure 13: Schematic representation of cosmic rays

- # Muons are 200 times heavier than electrons and are very penetrating particles.
- # Electromagnetic properties of muon are identical to those of electron (except the mass difference)
- ❖ Tau is the heaviest lepton, discovered in e⁺e⁻ annihilation experiments in 1975

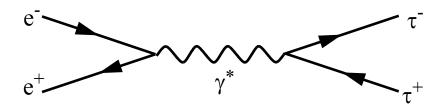


Figure 14: τ pair production in e⁺e⁻ annihilation

Electron is a stable particle, while μ and τ have finite lifetimes:

$$\tau_{\mu} = 2.2 \times 10^{-6} \,\text{s}$$
 and $\tau_{\tau} = 2.9 \times 10^{-13} \,\text{s}$

Muon decays in a purely leptonic mode:

$$\mu^- \to e^- + \overline{\nu}_e + \nu_{\mu} \tag{20}$$

Tau has a mass sufficient to decay into hadrons, but it has leptonic decay modes as well:

$$\tau^- \to e^- + \overline{\nu}_e + \nu_{\tau} \tag{21}$$

$$\tau^- \to \mu^- + \overline{\nu}_{\mu} + \nu_{\tau} \tag{22}$$

- Note: lepton numbers are conserved in <u>all</u> reactions ever observed
- Fraction of a given decay mode with respect to all possible decays is called *branching ratio*, denoted by B
- Decay rate: $\Gamma = B/\tau$, where τ is decaying particle's lifetime

Branching ratio B of the process (21) is 17.84%, and of (22) - 17.37%.

Important assumptions:

- Weak interactions of leptons are identical, just like electromagnetic ones ("universality of weak interactions")
- One can neglect <u>final</u> state lepton masses for many basic calculations

Decay rate Γ of a muon is given by the expression:

$$\Gamma(\mu^{-} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu}) = \frac{G_F^2 m_{\mu}^5}{195\pi^3}$$
 (23)

where G_F is the *Fermi constant* and m_{μ} is muon mass.

Substituting m_{μ} with m_{τ} in (23), one obtains decay rates of leptonic tau decays.

Since only decaying particle mass enters (23), decay rates are equal for processes (21) and (22).

It explains why branching ratios of these processes have such close values.

Lifetime of a lepton can be calculated using measured decay rate:

$$\tau_{l} = \frac{B(l^{-} \to e^{-} \overline{\nu}_{e} \nu_{l})}{\Gamma(l^{-} \to e^{-} \overline{\nu}_{e} \nu_{l})}$$
(24)

Here *l* indicates any other lepton, stands for either μ or τ .

Since muons have basically only one decay mode, **B=1** in their case. Using experimental values of B and formula (27), one obtains the ratio of muon and tau lifetimes:

$$\frac{\tau_{\tau}}{\tau_{\mu}} \approx 0.178 \cdot \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \approx 1.3 \times 10^{-7}$$

This again is in a very good agreement with independent experimental measurements

Universality of lepton interactions is proved to a great extent. That means that there is basically no difference between lepton generations, apart of the mass and the lepton numbers.

Quarks and hadrons

Quarks are spin-1/2 fermions, subject to <u>all</u> interactions. Quarks have fractional electric charges.

Quarks and their bound states are the only particles which interact strongly (via strong force).

Some historical background:

- # Proton and neutron ("nucleons") were known to interact strongly
- # In 1947, in cosmic rays, new heavy particles were detected ("hadrons")
- # By 1960s, in accelerator experiments, many dozens of hadrons were discovered
- An urge to find a kind of "periodic system" lead to the "Eightfold Way" classification, invented by Gell-Mann and Ne'eman in 1961, based on the SU(3) symmetry group and describing hadrons in terms of "building blocks"
- In 1964, Gell-Mann invented quarks as the building blocks (and Zweig invented "aces")

- The quark model: baryons (antibaryons) are bound states of three quarks (antiquarks); mesons are quark-antiquark bound states
- Hadrons is a common name for baryons and mesons

Like leptons, quarks and antiquarks occur in three generations:

$$\begin{pmatrix} u \\ d \end{pmatrix}, \begin{pmatrix} c \\ s \end{pmatrix}, \begin{pmatrix} t \\ b \end{pmatrix} \qquad \begin{pmatrix} \bar{d} \\ \bar{u} \end{pmatrix}, \begin{pmatrix} \bar{s} \\ \bar{c} \end{pmatrix}, \begin{pmatrix} \bar{b} \\ \bar{t} \end{pmatrix}$$

Name ("Flavour")	Symbol	Charge (units of e)	Mass
Down	d	-1/3	4-8 MeV/c ²
Up	u	+2/3	1.5-4.0 MeV/c ²
Strange	s	-1/3	80-130 MeV/c ²
Charmed	С	+2/3	1.15-1.35 GeV/c ²
Bottom	b	-1/3	4.1-4.9 GeV/c ²
Тор	t	+2/3	≈178 GeV/c ²

- Despite numerous attempts, free quarks could never be observed
- More quantum numbers:
 - # Each quark <u>flavour</u> is associated with an own quantum number, which is conserved in strong and electromagnetic interactions, but **not in weak ones**.

Quark *flavour quantum numbers* are defined as:

¥ strangeness S= -1 for s-quark

3 € Charm C=1 for c-quark

 \Re beauty B = -1 for b-quark

- \mathbb{H} top-quark has lifetime too short to form hadrons before decaying, thus *truth T*=0 for all hadrons
- # Up and down quarks have nameless flavour quantum numbers
- Baryons "inherit" quantum numbers of their constituents: there are "strange", "charmed" and "beautiful" baryons

Some examples of baryons:

Particle	Mass (GeV/c ²)	Quark composition	Q (units of e)	S	С	$\tilde{\boldsymbol{B}}$
p	0.938	uud	1	0	0	0
n	0.940	udd	0	0	0	0
Λ	1.116	uds	0	-1	0	0
$\Lambda_{f c}$	2.285	udc	1	0	1	0

Baryons are assigned own baryon quantum number

$$B=(N(q)-N(q))/3$$

 \mathbb{H} B = 1 for baryons

 \mathbb{H} B = -1 for antibaryons

 \mathbb{H} B = 0 for mesons

❖ B is conserved in all interactions, thus the lightest baryon, proton, is stable

Some examples of mesons:

Particle	Mass (Gev/c ²)	Quark composition	Q (units of e)	S	С	$\tilde{\boldsymbol{B}}$
π^+	0.140	ud	1	0	0	0
K ⁻	0.494	- su	-1	-1	0	0
D ⁻	1.869	d c	-1	0	-1	0
D_s^+	1.969	cs	1	1	1	0
B ⁻	5.279	bu _	-1	0	0	-1
Y	9.460	bb	0	0	0	0

- # Majority of hadrons are unstable and tend to decay by the strong interaction to the state with the lowest possible mass (lifetime about 10⁻²³ s)
- Hadrons with the lowest possible mass for each quark number (*S*, *C*, etc.) may live significantly longer before decaying weakly (lifetimes 10⁻⁷-10⁻¹³ s) or electromagnetically (mesons, lifetimes 10⁻¹⁶ 10⁻²¹ s). Such hadrons are called *long-lived particles* (sometimes even "stable")
- Here only truly stable hadron is proton that is, if baryon number conservation is not violated

Brief history of hadron discoveries

- # First known hadrons were proton and neutron
- \mathbb{H} The lightest are pions π ("pi-mesons"). There are charged pions π^+ , π^- with mass of 0.140 GeV/c², and neutral ones π^0 , mass 0.135 GeV/c²
- Pions and nucleons are the lightest particles containing u- and d-quarks only

Pions were discovered in 1947 in cosmic rays, using photoemulsions to detect particles

Some reactions induced by cosmic rays primaries:

$$p + p \rightarrow p + n + \pi^{+}$$

$$\rightarrow p + p + \pi^{0}$$

$$\rightarrow p + p + \pi^{+} + \pi^{-}$$

Same reactions can be reproduced in accelerators, with higher rates, although cosmic rays may provide higher energies.

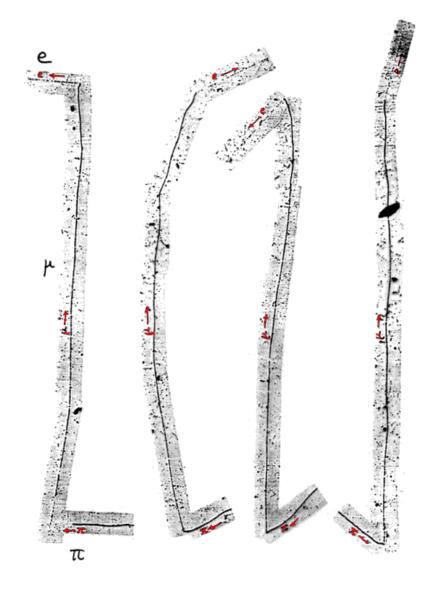


Figure 15: First observed pions: a π^+ stops in the emulsion and decays to a μ^+ and ν_μ , followed by the decay of μ^+ .In emulsions, pions were identified by much more dense ionization along the track, as compared to electron tracks.

Figure 15: examples of the reaction

$$\pi^+ \to \mu^+ + \nu_{\mu} \tag{25}$$

where the pion comes to rest, producing muons which in turn decay by the reaction $\mu^+\!\to\!e^+\nu_e^-\!\bar\nu_u$

Charged pions decay mainly to the muon-neutrino pair (branching ratio about 99.99%), having lifetimes of 2.6 × 10⁻⁸ s. In quark terms:

$$(u\overline{d}) \rightarrow \mu^+ + \nu_{\mu}$$

- ## The decay occurs through weak interaction, hence quark quantum numbers are not conserved. B and L are conserved
- Neutral pions decay mostly by the electromagnetic interaction, having shorter lifetime of 0.8 × 10⁻¹⁶ s:

$$\pi^0 \rightarrow \gamma + \gamma$$

Strange mesons and baryons

were called so, because they were produced in strong interactions, and yet had quite long lifetimes, and decayed weakly.

The lightest particles containing s-quarks are:

 \mathbb{H} mesons K⁺, K⁻ and K⁰, \overline{K}^0 : "kaons", lifetime of K⁺ is 1.2×10^{-8} s

 \mathbb{H} baryon Λ , lifetime of 2.6×10^{-10} s

Principal decay modes of strange hadrons:

$$K^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
 (B=0.64)
 $K^{+} \rightarrow \pi^{+} + \pi^{0}$ (B=0.21)
 $\Lambda \rightarrow \pi^{-} + p$ (B=0.64)

 $\Lambda \to \pi^0 + {\rm n} \qquad ({\rm B=0.36})$ The first decay is clearly a weak one. Decays of Λ have too long lifetime

to be strong: if Λ were (udd), the decay (udd) \rightarrow (du) + (uud) should have had a lifetime of order 10^{-23} s. Λ cannot be (udd) like the neutron.

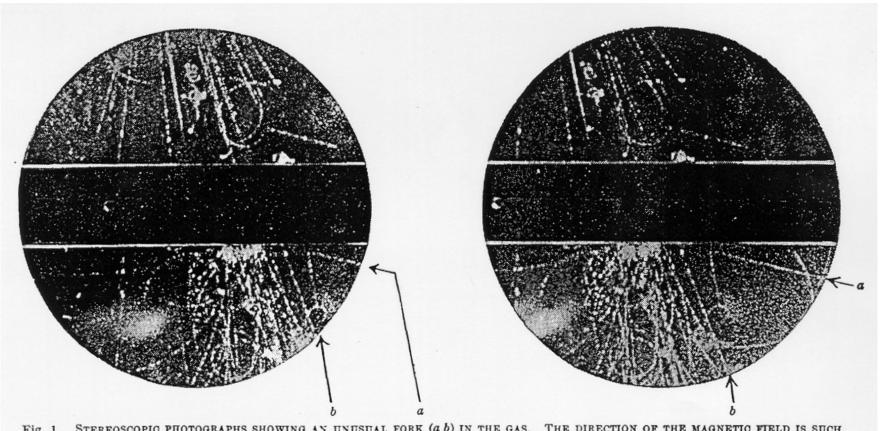


Fig. 1. Stereoscopic photographs showing an unusual fork (a b) in the gas. The direction of the magnetic field is such that a positive particle coming downwards is deviated in an anticlockwise direction

Figure 16: "Strange" particle discovery (neutral kaon) by Rochester and Butler, 1947

Solution: to invent a new "strange" quark, bearing a new quark number, "strangeness", which does not have to be conserved in weak interactions

S = 1	S = -1
$\overline{\Lambda}$ (1116) = $\overline{\text{uds}}$	Λ (1116) = uds
$K^{+}(494) = us$	$K^{-}(494) = su$
K^0 (498) = ds	$\overline{\mathrm{K}}^{0}(498) = \mathrm{sd}$

In strong interactions, strange particles have to be produced in pairs in order to conserve total strangeness ("associated production"):

$$\pi^{-} + p \to K^{0} + \Lambda \tag{26}$$

In 1952, *bubble chambers* were invented as particle detectors, and also worked as *targets*, providing, in particular, the proton target for reaction (30).

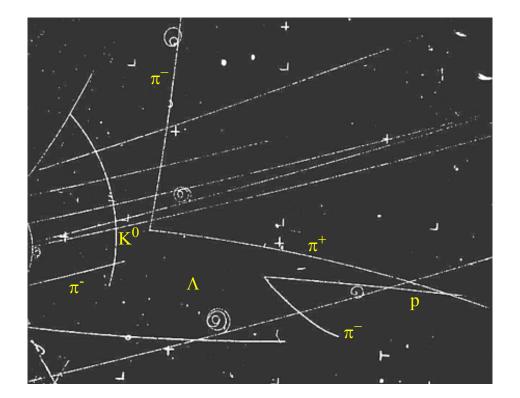


Figure 17: A bubble chamber picture of the reaction (26)

- A bubble chamber is filled with a liquid (hydrogen, propane, freons) under pressure, heated above its boiling point.
- Particles ionize the liquid along their passage.
- Volume expands \Rightarrow pressure drops \Rightarrow liquid starts boiling along the ionization trails.
- Visible bubbles are stereo-photographed.

- ❖ Bubble chambers were great tools in particle discoveries, providing physicists with numerous hadrons, all of them fitting u-d-s quark scheme until 1974.

The new quark was called "charmed", and the corresponding quark number is charm, C. Since J/ψ itself has C=0, it is said to contain "hidden charm".

Shortly after that particles with "open charm" were discovered as well:

$$D^{+}(1869) = c\overline{d}, D^{0}(1865) = c\overline{u}$$

 $D^{-}(1869) = d\overline{c}, \overline{D}^{0}(1865) = u\overline{c}$
 $\Lambda_{c}^{+}(2285) = udc$

Even heavier charmed mesons were found – those which contained strange quark as well:

$$D_S^+$$
(1969) = $c\bar{s}$, D_S^- (1969) = $s\bar{c}$

Lifetimes of the lightest charmed particles are of order 10⁻¹³ s, well in the expected range of weak decays.

Discovery of "charmed" particles was a triumph for the electroweak theory, which demanded number of quarks and leptons to be equal.

In 1977, "beautiful" mesons were discovered:

$$Y(9460) = b\overline{b}$$

 $B^{+}(5279) = u\overline{b}, B^{0}(5279) = d\overline{b}$
 $B^{-}(5279) = b\overline{u}, \overline{B}^{0}(5279) = b\overline{d}$

and the lightest b-baryon: Λ_h^0 (5461) = udb

And this is the limit: top-quark is too unstable to form observable hadrons