Modern Experimental Particle Physics

Oxana Smirnova 2013, Spring Semester Division of Particle Physics Lund University

I. Basic concepts, leptons, quarks and hadrons

- Particle physics studies elementary "building blocks" of *matter* and *interactions* between them.
- Matter consists of particles.

Hatter is built of particles called "fermions": those that have half-integer spin, e.g. 1/2; obey Fermi-Dirac statistics.

Particles interact via forces.

 \mathbb{H} Interaction is an exchange of a force-carrying particle.

Force-carrying particles are called gauge bosons (spin-1).

Units and dimensions

◆ Particle energy is measured in electron-volts:
1 eV ≈ 1.602 × 10⁻¹⁹ J

H 1 eV is energy of an electron upon passing a voltage of 1 Volt. **H** 1 keV = 10^3 eV; 1 MeV = 10^6 eV; 1 GeV = 10^9 eV

The reduced Planck constant and the speed of light:

$$\hbar \equiv h / 2\pi = 6.582 \times 10^{-22} \text{ MeV s}$$
 (2)

$$c = 2.9979 \times 10^8 \,\mathrm{m/s}$$
 (3)

and the "*conversion constant*" is:

$$\hbar c = 197.327 \times 10^{-15} \,\mathrm{MeV}\,\mathrm{m}$$
 (4)

✤ For simplicity, *natural units* are used:

$$\hbar = 1$$
 and $c = 1$ (5)

thus the unit of mass is eV/c^2 , and the unit of momentum is eV/c

(1)

Four-vector formalism

Relativistic kinematics is formulated with four-vectors:

space-time four-vector: $x=(t, \overline{x})=(t, x, y, z)$, where *t* is time and \overline{x} is a coordinate vector (*c*=1 notation is used)

H momentum four-vector: $p=(E,\overline{p})=(E,p_x,p_y,p_z)$, where *E* is particle energy and \overline{p} is particle momentum vector

Calculus rules with four-vectors:

4-vectors are defined as

contravariant:

$$A^{\mu} = (A^{0}, \vec{A}), B^{\mu} = (B^{0}, \vec{B}),$$
(6)

and *covariant*:

$$A_{\mu} = (A^{\theta}, \stackrel{\longrightarrow}{-A}), B_{\mu} = (B^{\theta}, \stackrel{\longrightarrow}{-B}).$$
(7)

Scalar product of two four-vectors is defined as:

$$A \cdot B = A^{0}B^{0} - (\overrightarrow{A} \cdot \overrightarrow{B}) = A_{\mu}B^{\mu} = A^{\mu}B_{\mu}.$$
 (8)

 \mathbb{H} Scalar products of momentum and space-time four-vectors are thus:

$$x \cdot p = x^{\theta} p^{\theta} - (\vec{x} \cdot \vec{p}) = Et - (\vec{x} \cdot \vec{p})$$
(9)

4-vector product of coordinate and momentum represents particle wavefunction

$$p \cdot p = p^{2} = p^{0} p^{0} - (\vec{p} \cdot \vec{p}) = E^{2} - \vec{p}^{2} \equiv m^{2}$$
(10)

4-momentum squared gives particle's invariant mass

For relativistic particles, we can see that

$$E^2 = p^2 + m^2$$
 (c=1) (11)

Forces of nature

Figure 1: Forces and their carriers

Summary table of forces:

Force	Acts on/ couples to:	Carrier	Range	Strength	Stable systems	Induced reaction
Gravity	all particles Mass/E-p tensor	graviton G (has not yet been observed)	$\log F \propto 1/r^2$	~ 10 ⁻³⁹	Solar system	Object falling
Weak force	fermions hypercharge	bosons W ⁺ ,W⁻ and Z	$< 10^{-17} \mathrm{m}$	10 ⁻⁵	None	β -decay
Electro- magnetism	charged particles electric charge	photon γ	$\frac{\log}{F \propto 1/r^2}$	1/137	Atoms, molecules	Chemical reactions
Strong force	quarks and gluons <i>colour charge</i>	gluons g (8 different)	10 ⁻¹⁵ m	1	Hadrons, nuclei	Nuclear reactions

The Standard Model

- ✤ Electromagnetic and weak forces can be described by a single theory ⇒ the *"Electroweak Theory"* was developed in 1960s (Glashow, Weinberg, Salam).
- Theory of strong interactions appeared in 1970s: "Quantum Chromodynamics" (QCD).
- The "Standard Model" (SM) combines all the current knowledge.
 - Cravitation is VERY weak at particle scale, and it is not included in the SM.
 Moreover, quantum theory for gravitation does not exist yet.
- Main postulates of SM:
 - 1) Basic constituents of matter are *quarks* and *leptons* (spin 1/2)
 - 2) They interact by exchanging *gauge bosons* (spin 1)
 - 3) Quarks and leptons are subdivided into 3 generations

Figure 2: Standard Model: quarks, leptons and bosons

Range ~ 10⁻¹⁵ m, relative strength = 1

₭ SM does not explain neither appearance of the mass nor the reason for existence of the 3 generations.

Range <10⁻¹⁷ m, relative strength <10⁻⁵

e

Range: long, relative strength ~ 10⁻²

Antiparticles

Particles are described by wavefunctions:

$$\Psi(\vec{x},t) = Ne^{i(\vec{p}\vec{x} - Et)}$$
(12)

 \vec{x} is the coordinate vector, \vec{p} - momentum vector, \vec{E} and \vec{t} are energy and time.

Particles obey the classical Schrödinger equation:

$$i\frac{\partial}{\partial t}\Psi(\vec{x},t) = H\Psi(\vec{x},t) = \frac{\vec{p}^2}{2m}\Psi(\vec{x},t) = -\frac{1}{2m}\nabla^2\Psi(\vec{x},t)$$
(13)
here $\vec{p} = \frac{h}{2\pi i}\nabla \equiv \frac{\nabla}{i}$ (14)

For relativistic particles, $E^2 = p^2 + m^2$ (11), and (13) is replaced by the Klein-Gordon equation (15):

∜

$$-\frac{\partial^2}{\partial t^2}(\Psi) = H^2 \Psi(\vec{x}, t) = -\nabla^2 \Psi(\vec{x}, t) + m^2 \Psi(\vec{x}, t)$$
(15)

• There exist *negative* energy solutions with $E_+<0$!

$$\Psi^*(\vec{x},t) = N^* \cdot e^{i(-\vec{p}\vec{x} + E_+ t)}$$

Here is a problem with the Klein-Gordon equation: it is second order in derivatives. In 1928, Dirac found the first-order form having the same solutions:

$$i\frac{\partial\Psi}{\partial t} = -i\sum_{i}\alpha_{i}\frac{\partial\Psi}{\partial x_{i}} + \beta m\Psi$$
(16)

Here α_i and β are 4×4 matrices, and Ψ are four-component wavefunctions: *spinors* (for particles with spin 1/2).

$$= \begin{array}{c} \Psi_{1}(\vec{x},t) \\ \Psi_{2}(\vec{x},t) \\ \Psi_{3}(\vec{x},t) \\ \Psi_{4}(\vec{x},t) \end{array}$$

 $\Psi(\dot{x},t)$

Dirac-Pauli representation of matrices α_i and β :

$$\alpha_{i} = \begin{pmatrix} 0 & \sigma_{i} \\ \sigma_{i} & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

Here *I* is a 2×2 unit matrix, 0 is a 2×2 matrix of zeros, and σ_i are 2×2 *Pauli matrices*:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Also possible is *Weyl representation*:

$$\alpha_{i} = \begin{pmatrix} -\sigma_{i} & 0 \\ 0 & \sigma_{i} \end{pmatrix} \qquad \beta = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

Figure 3: Fermions in Dirac's representation

- The "hole" created by appearance of an electron with "normal" energy is interpreted as the presence of electron's *antiparticle* with the opposite charge.
- Output: Severy charged particle must have an antiparticle of the same mass and opposite charge, to solve the mystery of "negative" energy.

Feynman diagrams

In 1940s, Richard Feynman developed a diagram technique for representing processes in particle physics.

Figure 4: A Feynman diagram example: e+e- -> γ

Main assumptions and requirements:

H Time runs from left to right

 \Re Arrow directed towards the <u>right</u> indicates a particle, and otherwise - antiparticle

 H At every vertex, <u>momentum</u>, <u>angular momentum</u> and <u>charge</u> are conserved (but not necessarily energy)

st Particles are shown by solid lines, gauge bosons - by helices or dashed lines

Figure 5: Feynman diagrams for **VIRTUAL** processes involving e^+ , e^- and γ **X** A virtual process does not require energy conservation A real process demands energy conservation, is a combination of virtual processes:

Figure 6: Electron-electron scattering, single photon exchange

Any real process receives contributions from all the possible virtual processes:

Figure 7: Two-photon exchange contribution

♦ Probability P(e⁻e⁻ → e⁻e⁻) = |M(1 γ exchange) + M(2 γ exchange) + M(3 γ exchange) +... |² (M stands for contribution, "Matrix element")

 \mathbb{H} Number of vertices in a diagram is called its *order*.

H Each vertex has an associated probability proportional to a *coupling constant*, usually denoted as " α ". In discussed processes this constant is

$$\alpha_{em} = \frac{e^2}{4\pi\varepsilon_0} \approx \frac{1}{137} \ll 1 \tag{17}$$

- **H** Matrix element for a two-vertex process is proportional to $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, where each vertex has a factor $\sqrt{\alpha}$. Probability for a process is $P = |M|^2 = \alpha^2$
- **H** For the real processes, a diagram of order \mathcal{N} gives a contribution to probability of order α^n .
- Provided sufficiently small α , high order contributions are smaller and smaller and the result is convergent: $P(\text{real}) = |M(\alpha) + M(\alpha^2) + M(\alpha^3)...|^2$

Often lowest order calculation is precise enough.

Figure 8: Lowest order contributions to $e^+e^- \rightarrow \gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^2$

H Diagrams which differ only by time-ordering are usually implied by drawing only one of them

Figure 9: Lowest order of the process $e^+e^- \rightarrow \gamma\gamma\gamma$. $M = \sqrt{\alpha} \cdot \sqrt{\alpha} \cdot \sqrt{\alpha}$, $P=|M|^2=\alpha^3$

This kind of process implies 3!=6 different time orderings

Knowing order of diagrams is sufficient to estimate the ratio of appearance rates of processes:

$$R = \frac{Rate(e^+e^- \to \gamma\gamma\gamma)}{Rate(e^+e^- \to \gamma\gamma)} = \frac{O(\alpha^3)}{O(\alpha^2)} = O(\alpha)$$

This ratio can be measured experimentally; it appears to be $R = 0.9 \times 10^{-3}$, which is smaller than α_{em} , being only a first order prediction.

Figure 10: Diagrams that are *not* related by time ordering

 \rarproptontheta For nuclei, the coupling is proportional to $Z^2\alpha,$ hence the rate of this process is of order $Z^2\alpha^3$

Exchange of a massive boson

Figure 11: Exchange of a massive particle X

In the rest frame of particle A: $A(E_0, \dot{p}_0) \rightarrow A(E_A, \dot{p}) + X(E_x, -\dot{p})$

where
$$E_0 = M_A$$
, $\dot{p}_0 = (0, 0, 0)$, $E_A = \sqrt{p^2 + M_A^2}$, $E_X = \sqrt{p^2 + M_X^2}$

From this one can estimate the maximum distance over which X can propagate before being absorbed: $\Delta E = E_X + E_A - M_A \ge M_X$, and this energy violation can exist only for a period of time $\Delta t \approx \hbar / \Delta E$ (Heisenberg's uncertainty relation), hence the *range of the interaction* is $r \approx R = \Delta t c = (\hbar / M_X)c$ For a massless exchanged particle, the interaction has an infinite range (e.g., electromagnetic)

In case of a very heavy exchanged particle (e.g., a W boson in weak interaction), the interaction can be approximated by a *zero-range*, or *point interaction*:

Figure 12: Point interaction as a result of $M_x \rightarrow \infty$

E.g., for a W boson: $R_W = \hbar / M_W = \hbar / (80.4 \text{ GeV/c}^2) \approx 2 \times 10^{-18} \text{ m}$

Leptons

Leptons are spin-1/2 fermions, not subject to strong interaction

$$\left(\begin{array}{c} v_e \\ e \\ e \end{array} \right), \left(\begin{array}{c} v_\mu \\ \mu \end{array} \right), \left(\begin{array}{c} v_\tau \\ \tau \end{array} \right)$$

$$M_e < M_\mu < M_\tau$$

H Electron e^{-} , muon μ^{-} and tau-lepton τ^{-} have corresponding neutrinos v_e , v_{μ} and v_{τ}

 \Re Electron, muon and tau have electric charge of *-e*; neutrinos are neutral

H Neutrinos have *very small* masses (were thought to be massless)

 \mathbb{H} For neutrinos, only weak interactions have been observed so far

In addition to "usual" quantum numbers (spin, parity, electric charge etc), leptons carry lepton numbers

Antileptons are: positron e^+ , positive muon μ^+ , positive tau-lepton τ^+ , and antineutrinos:

$$\begin{pmatrix} e^{+} \\ \bar{v}_{e} \end{pmatrix}, \begin{pmatrix} \mu^{+} \\ \bar{v}_{\mu} \end{pmatrix}, \begin{pmatrix} + \\ \tau^{+} \\ \bar{v}_{\tau} \end{pmatrix}$$

- ♦ Neutrinos and antineutrinos differ by the *lepton number*. Leptons posses lepton numbers L_α=1 (α stands for e, µ or τ), and antileptons have L_α=-1
- Lepton numbers are <u>conserved</u> in <u>all</u> interactions!

Neutrinos can not be directly registered by any detector, there are only indirect measurements of their properties

H First indication of neutrino existence came from β -decays of nuclei, N:

$$N(Z,A) \rightarrow N(Z+1,A) + e^{-} + \overline{v}_{e}$$

 β -decay is simply one of the neutrons decaying:

$$n \rightarrow p + e^- + \overline{v}_e$$

Experimentally, only proton and electron can be observed, and a fraction of energy and angular momentum is "missing".

Note that for the sake of the lepton number conservation, electron must be accompanied by an electron-type <u>antineutrino!</u>

The $\overline{v_e}$ mass can be estimated from the electron energy in the β -decay:

$$m_e \le E_e \le \Delta M_N - m_{ve}^-$$

Current results from the tritium decay indicate a very small upper limit:

$$^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{v}_{e} \qquad \text{m}_{ve}^{-} \le 3 \text{ eV/c}^{2}$$

Recently observed neutrino mixing suggests non-zero mass

An inverse β -decay (neutrino "capture") also takes place:

$$v_e + n \rightarrow e^- + p$$
 (18)
or
 $\overline{v}_e + p \rightarrow e^+ + n$ (19)

Probabilities of these processes is very low, therefore to register any, one needs a very intense flux of neutrinos. Nevertheless, this was the process used for neutrino discovery (1956)

Antiparticles naturally accompany particle production in order to satisfy respective conservation laws

 \mathfrak{H} positrons are produced even in thunderstorms...

 \mathfrak{H} ... but annihilate with much more abundant matter particles

Muons are readily observed in cosmic rays

Cosmic rays have two components:

- *primaries*, which are high-energy particles coming from the outer space, mostly hydrogen nuclei
- 2) *secondaries*, the particles which are produced in collisions of primaries with nuclei in the Earth atmosphere; muons belong to this component

Figure 13: Schematic representation of cosmic rays

 \mathbb{H} Muons are 200 times heavier than electrons and are very penetrating particles.

- Herein Electromagnetic properties of muon are identical to those of electron (except the mass difference)
- Tau is the heaviest lepton, discovered in e⁺e⁻ annihilation experiments in 1975

Figure 14: τ pair production in e⁺e⁻ annihilation

Solution \star Electron is a stable particle, while μ and τ have finite lifetimes:

$$\tau_{\mu} = 2.2 \times 10^{-6} \, \text{s}$$
 and $\tau_{\tau} = 2.9 \times 10^{-13} \, \text{s}$

Muon decays in a purely leptonic mode:

$$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu \tag{20}$$

Tau has a mass sufficient to decay into hadrons, but it has leptonic decay modes as well:

$$\tau^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\tau}$$

$$\tau^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu} + \nu_{\tau}$$
(21)
(22)

- Note: lepton numbers are conserved in <u>all</u> reactions ever observed
- Fraction of a given decay mode with respect to all possible decays is called *branching ratio*, denoted by B
- Decay rate: $\Gamma = B/\tau$, where τ is decaying particle's lifetime
- Branching ratio B of the process (21) is 17.84%, and of (22) 17.37%.

Important assumptions:

- Weak interactions of leptons are identical, just like electromagnetic ones ("universality of weak interactions")
- One can neglect <u>final</u> state lepton masses for many basic calculations

Decay rate Γ of a muon is given by the expression:

$$\Gamma(\mu^{-} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu}) = \frac{G_{F}^{2} m_{\mu}^{5}}{195\pi^{3}}$$
(23)

where G_F is the *Fermi constant* and m_{μ} is muon mass.

Substituting m_{μ} with m_{τ} in (23), one obtains decay rates of leptonic tau decays.

Since <u>only decaying particle mass</u> enters (23), decay rates are <u>equal</u> for processes (21) and (22).

 \mathbb{H} It explains why branching ratios of these processes have such close values.

Lifetime of a lepton can be calculated using measured decay rate:

$$\tau_l = \frac{B(l^- \to e^- \bar{\nu}_e \nu_l)}{\Gamma(l^- \to e^- \bar{\nu}_e \nu_l)}$$
(24)

Here *l* indicates any other lepton, stands for either μ or τ .

Since muons have basically only one decay mode, **B=1** in their case. Using experimental values of B and formula (27), one obtains the ratio of muon and tau lifetimes:

$$\frac{\tau_{\tau}}{\tau_{\mu}} \approx 0.178 \cdot \left(\frac{m_{\mu}}{m_{\tau}}\right)^5 \approx 1.3 \times 10^{-7}$$

This again is in a very good agreement with independent experimental measurements

Universality of lepton interactions is proved to a great extent. That means that there is basically no difference between lepton generations, apart of the mass and the lepton numbers.

Quarks and hadrons

Quarks are spin-1/2 fermions, subject to <u>all</u> interactions. Quarks have fractional electric charges.

Quarks and their bound states are the only particles which interact strongly (via strong force).

Some historical background:

- \mathbb{H} Proton and neutron ("nucleons") were known to interact strongly
- \mathbb{H} In 1947, in cosmic rays, new heavy particles were detected ("hadrons")
- H By 1960s, in accelerator experiments, many dozens of hadrons were discovered
- An urge to find a kind of "periodic system" lead to the "Eightfold Way" classification, invented by Gell-Mann and Ne'eman in 1961, based on the SU(3) symmetry group and describing hadrons in terms of "building blocks"
- ₭ In 1964, Gell-Mann invented quarks as the building blocks (and Zweig invented "aces")

- The quark model: baryons (antibaryons) are bound states of three quarks (antiquarks); mesons are quark-antiquark bound states
- Hadrons is a common name for baryons and mesons

Like leptons, quarks and antiquarks occur in three generations:

$$\left(\begin{array}{c}u\\d\end{array}\right), \left(\begin{array}{c}c\\s\end{array}\right), \left(\begin{array}{c}t\\b\end{array}\right) \qquad \left(\begin{array}{c}\bar{d}\\\bar{u}\end{array}\right), \left(\begin{array}{c}\bar{s}\\\bar{c}\end{array}\right), \left(\begin{array}{c}\bar{b}\\\bar{t}\end{array}\right)$$

Name ("Flavour")	Symbol	Charge (units of e)	Mass
Down	d	-1/3	4-8 MeV/c ²
Up	u	+2/3	1.5-4.0 MeV/c ²
Strange	S	-1/3	80-130 MeV/c ²
Charmed	С	+2/3	1.15-1.35 GeV/c ²
Bottom	b	-1/3	4.1-4.9 GeV/c ²
Тор	t	+2/3	≈178 GeV/c ²

- Despite numerous attempts, free quarks could never be observed
- More quantum numbers:
 - Each quark <u>flavour</u> is associated with an own quantum number, which is conserved in strong and electromagnetic interactions, but **not in weak ones**.
- Quark *flavour quantum numbers* are defined as:
 - **₭** *strangeness* S= -1 for s-quark
 - **₭** *charm* C=1 for c-quark
 - **\Re** beauty \tilde{B} = -1 for b-quark
 - **H** top-quark has lifetime too short to form hadrons before decaying, thus *truth* T=0 for all hadrons
 - \mathbb{H} Up and down quarks have nameless flavour quantum numbers
- Baryons "inherit" quantum numbers of their constituents: there are "strange", "charmed" and "beautiful" baryons

Some examples of baryons:

Particle	Mass (GeV/c ²)	Quark composition	Q (units of e)	S	С	<i>B</i>
р	0.938	uud	1	0	0	0
n	0.940	udd	0	0	0	0
Λ	1.116	uds	0	-1	0	0
Λ_{c}	2.285	udc	1	0	1	0

Baryons are assigned own *baryon quantum number*

 $B = (N(q) - N(\bar{q}))/3$

- $\mathcal{H} B = 1$ for baryons
- \mathbb{H} B = -1 for antibaryons
- $\mathbb{H} B = 0$ for mesons
- B is conserved in all interactions, thus the lightest baryon, proton, is stable

Some examples of mesons:

Particle	Mass (Gev/c ²)	Quark composition	Q (units of e)	S	С	<i>B</i>
π^+	0.140	ud	1	0	0	0
Κ-	0.494	su	-1	-1	0	0
D	1.869	dc	-1	0	-1	0
D_s^+	1.969	cs	1	1	1	0
B⁻	5.279	bu	-1	0	0	-1
Y	9.460	bb	0	0	0	0

H Majority of hadrons are unstable and tend to decay by the strong interaction to the state with the lowest possible mass (lifetime about 10^{-23} s)

- Hadrons with the lowest possible mass for each quark number (S, C, etc.) may live significantly longer before decaying weakly (lifetimes 10⁻⁷-10⁻¹³ s) or electromagnetically (mesons, lifetimes 10⁻¹⁶ - 10⁻²¹ s). Such hadrons are called *long-lived particles* (sometimes even "stable")
- Here only truly stable hadron is proton that is, if baryon number conservation is not violated

Brief history of hadron discoveries

 \mathbb{H} First known hadrons were proton and neutron

- **H** The lightest are pions π ("pi-mesons"). There are charged pions π^+ , π^- with mass of 0.140 GeV/c², and neutral ones π^0 , mass 0.135 GeV/c²
- Pions and nucleons are the lightest particles containing u- and d-quarks only
- Pions were discovered in 1947 in cosmic rays, using photoemulsions to detect particles

Some reactions induced by cosmic rays primaries:

$$p + p \rightarrow p + n + \pi^{+}$$
$$\rightarrow p + p + \pi^{0}$$
$$\rightarrow p + p + \pi^{+} + \pi^{-}$$

Same reactions can be reproduced in accelerators, with higher rates, although cosmic rays may provide higher energies.

Figure 15: First observed pions: a π^+ stops in the emulsion and decays to a μ^+ and ν_{μ} , followed by the decay of μ^+ .In emulsions, pions were identified by much more dense ionization along the track, as compared to electron tracks.

Figure 15: examples of the reaction

$$\pi^+ \to \mu^+ + \nu_\mu \tag{25}$$

where the pion comes to rest, producing muons which in turn decay by the reaction $\mu^+ \to e^+ v_e \bar{v}_\mu$

Charged pions decay mainly to the muon-neutrino pair (branching ratio about 99.99%), having lifetimes of 2.6 × 10⁻⁸ s. In quark terms:

$$(u\overline{d}) \rightarrow \mu^+ + \nu_{\mu}$$

 \Re The decay occurs through weak interaction, hence quark quantum numbers are not conserved. *B* and *L* are conserved

Neutral pions decay mostly by the electromagnetic interaction, having shorter lifetime of 0.8 × 10⁻¹⁶ s:

$$\pi^0 \longrightarrow \gamma + \gamma$$

Strange mesons and baryons

were called so, because they were produced in strong interactions, and yet had quite long lifetimes, and decayed weakly.

The lightest particles containing s-quarks are:

H mesons K⁺, K⁻ and K⁰, \overline{K}^0 : *"kaons"*, lifetime of K⁺ is 1.2×10^{-8} s **H** baryon Λ , lifetime of 2.6×10^{-10} s

Principal decay modes of strange hadrons:

$\mathrm{K}^+ \rightarrow \mathrm{\mu}^+ + \mathrm{v}_{\mathrm{\mu}}$	(B=0.64)
$\mathrm{K}^+ \rightarrow \pi^+ + \pi^0$	(B=0.21)
$\Lambda \rightarrow \pi^- + p$	(B=0.64)
$\Lambda \rightarrow \pi^0 + n$	(B=0.36)

The first decay is clearly a weak one. Decays of Λ have too long lifetime to be strong: if Λ were (udd), the decay (udd) \rightarrow (du) + (uud) should have had a lifetime of order 10⁻²³ s. Λ cannot be (udd) like the neutron.

Fig. 1. STEREOSCOPIO PHOTOGRAPHS SHOWING AN UNUSUAL FORK (a b) IN THE GAS. THE DIRECTION OF THE MAGNETIC FIELD IS SUCH THAT A POSITIVE PARTICLE COMING DOWNWARDS IS DEVIATED IN AN ANTICLOCKWISE DIRECTION

Figure 16: "Strange" particle discovery (neutral kaon) by Rochester and Butler, 1947

Solution: to invent a new *"strange"* quark, bearing a new quark number, *"strangeness"*, which does not have to be conserved in weak interactions

$$S = 1$$
 $S = -1$
 $\overline{\Lambda}$ (1116) = uds
 Λ (1116) = uds

 $K^+(494) = u\overline{s}$
 $K^-(494) = s\overline{u}$
 K^0 (498) = d\overline{s}
 $\overline{K}^0(498) = s\overline{d}$

In strong interactions, strange particles have to be produced in pairs in order to conserve total strangeness ("associated production"):

$$\pi^{-} + p \to K^{0} + \Lambda \tag{26}$$

In 1952, *bubble chambers* were invented as particle detectors, and also worked as *targets*, providing, in particular, the proton target for reaction (26).

Figure 17: A bubble chamber picture of the reaction (26)

- A bubble chamber is filled with a liquid (hydrogen, propane, freons) under pressure, heated above its boiling point.
- Particles ionize the liquid along their passage.
- Volume expands \Rightarrow pressure drops \Rightarrow liquid starts boiling along the ionization trails.
- Visible bubbles are stereo-photographed.

- Bubble chambers were great tools in particle discoveries, providing physicists with numerous hadrons, all of them fitting u-d-s quark scheme until 1974.
 - H In 1974, a new particle was discovered, which demanded a new flavour to be introduced. Since it was detected simultaneously by two groups in Brookhaven (BNL) and Stanford (SLAC), it received a double name: J/ψ (3097), a cc meson
- The new quark was called *"charmed"*, and the corresponding quark number is *charm*, *C*. Since J/ψ itself has *C*=0, it is said to contain "hidden charm".
- Shortly after that particles with "open charm" were discovered as well:

$$D^{+}(1869) = cd, D^{0}(1865) = cu$$

 $D^{-}(1869) = dc, \overline{D}^{0}(1865) = uc$
 $\Lambda_{c}^{+}(2285) = udc$

Even heavier charmed mesons were found – those which contained strange quark as well:

$$D_{s}^{+}(1969) = c\bar{s}, D_{s}^{-}(1969) = s\bar{c}$$

Lifetimes of the lightest charmed particles are of order 10⁻¹³ s, well in the expected range of weak decays.

Discovery of "charmed" particles was a triumph for the electroweak theory, which demanded number of quarks and leptons to be equal.

In 1977, *"beautiful"* mesons were discovered:

$$Y(9460) = b\overline{b}$$
$$B^{+}(5279) = u\overline{b}, B^{0}(5279) = d\overline{b}$$
$$B^{-}(5279) = b\overline{u}, \overline{B}^{0}(5279) = b\overline{d}$$
and the lightest b-baryon: $\Lambda_{b}^{0}(5461) = udb$

And this is the limit: top-quark is too unstable to form observable hadrons