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Summary

In this course we will learn how to transport a single particle
and a group of particles under the effect of an electromagnetic
potential.

• The first lecture introduces the Hamiltonian formalism that
we will use in the other three lectures;

• the second lecture discusses the linear solutions of the
Hamilton equations;

• the third lecture treats the non-linear solutions of the
Hamilton equations;

• the fourth lecture is the treatment of symplectic integrators.
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Newton Equation

We are familiar with the Newton equation. For a particle with
coordinate vector q(t) = (q1(t), . . . , qn(t)) moving in an external
potential V (q) the equations are:

mq̈ = −∇V (q), (1)

where ∇ is the gradient function. The above are second order
differential equations in time t.
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Hamilton Equations

It exists an alternative way to write the equations of Newton by
splitting them into two first-order differential equations using the
Hamiltonian function H and the equations of motion

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
. (2)

In this lectures I assume that the reader is familiar with the Least-
Action principle, the Lagrangian and the rigorous definition of
Hamiltonian and momentum as per [2] Chapter 8. For the pur-
pose of this course the Hamiltonian will be the total energy of
the particle

H = T + V. (3)
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Exercise: from Hamilton to Newton equations

Assuming that p and q are the canonical variables in one dimen-
sion, prove that if T = p2

2m and V = V (q) the Eqs. (2) are
equivalent to the Eq. (1) (the solution can be easily extended to
the many variables case).
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Exercise: the free particle

Calculate the trajectory of a free particle, i.e. V = 0 with the
classical Hamiltonian

H =
p2

2m
(4)

and with the relativistic Hamiltonian

H =
√
p2c2 +m2c4. (5)
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Symplecticity

Symplecticity and Hamiltonian are tight connect and a proper
treatment can be found in [1]. Here we will introduce it with a
simple algebraic approach. The Hamilton equations are

q̇1

.̇..
q̇n

ṗ1

.̇..
ṗn


=



0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1

−1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · −1 0 · · · 0





∂H/∂q1

...
∂H/∂qn

∂H/∂p1

...
∂H/∂pn


(6)
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Symplecticity

In a more compact form they are

dv

dt
= S∇TH (7)

where v = (q1, . . . , qn, p1, . . . , pn) is the vector for both coordi-
nates and momenta; ∇TH is the gradient of the Hamiltonian
calculated with respect to the coordinates and momenta and it
is transposed because the gradient is generally defined as a row
vector; S is the matrix (

0 I

−I 0

)

where I is the n× n identity matrix.
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Symplecticity

Now we imagine that there exists an interval [t0, t1] ⊆ R such
that for any v0 in an open subset U ⊆ R2n there exists a unique
solution M(t, v0) in the whole interval [t0, t1] of the Hamilton
equations with initial condition M(t0, v0) = v0. For any t ∈
[t0, t1] define the map

Mt : U → R2n v0 7→M(t, v0).

Under opportune hypothesis on the Hamiltonian H the above
unique solutions exist and the maps Mt are smooth for any t in
the given interval.
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Symplecticity

One says that Mt is symplectic at v0 if its jacobian J at that
point satisfies

JTSJ = S. (8)

Recall that the jacobian matrix is given by

J =



∂Mq1
∂q1

. . .
∂Mq1
∂qn

∂Mq1
∂p1

. . .
∂Mq1
∂pn

...
...

...
...

...
...

∂Mqn
∂q1

. . .
∂Mqn
∂qn

∂Mqn
∂p1

. . .
∂Mqn
∂pn

∂Mp1
∂q1

. . .
∂Mp1
∂qn

∂Mp1
∂p1

. . .
∂Mp1
∂pn

...
...

...
...

...
...

∂Mpn
∂q1

. . .
∂Mpn
∂qn

∂Mpn
∂p1

. . .
∂Mpn
∂pn


(9)

The map Mt is symplectic if it is symplectic at any point of U .
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Every solution of Hamilton equations is Symplectic

To prove that for each solution of an Hamiltonian problem the
condition (8) holds, we first note that J can be written as

J =M∇, (10)

we can then calculate the total time derivative of J as

J̇ =
d

dt
(M)∇. (11)

The time derivative of the n-th component of M , M{q,p}n , is

d

dt
M{q,p}n =

∂M{q,p}n
∂q1

dq1

dt
+ · · ·+

∂M{q,p}n
∂pn

dpn
dt

(12)

then we have
d

dt
J = Jv̇∇ = JS∇TH∇ (13)

where we used the Eq. 7 for v̇.
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Every solution of Hamilton equations is Symplectic

We calculate now

d

dt

(
JSJT

)
= J̇SJT + JSJ̇T

= JS∇TH∇SJT + JS
(
JS∇TH∇

)T
= JS∇TH∇SJT + JS∇T∇HSTJT

= 0. (14)

Where we used ST = −S and ∇T∇H = ∇TH∇ bcecause the
partial derivatives of the Hamiltonian commute. We just proved
that JSJT is a constant that we can evaluate when t = 0 and
J = I obtaining

JSJT = S. (15)
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Every solution of Hamilton equations is Symplectic

The final step is obtained through simple algebra

JSJT = S

SJT = J−1S

JT = S−1J−1S

JTS = S−1J−1SS

JTSJ = S−1J−1SSJ

JTSJ = S. (16)

Where S−1 = −S and S2 = −I.
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Exercise: Determinant of Symplectic matrix

Prove that if J is symplectic, then

det(J) = 1. (17)

If this exercise is too complicate you can try to prove at least
that det(J) = ±1, this is much simpler.
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Liouville’s Theorem

A consequence of Eq. (17) is the Liouville’s Theorem. It states
that the volume of the phase space is preserved by the Hamil-
tonian equations of motion. Let say that M is the solution
of the Hamiltonian, then M will send the coordinates and mo-
menta (q, p) into a new set of coordinates and momenta (Q,P ) =

M(q, p).

The infinitesimal volume element is the 2n-form that transforms
according to

Vfinal = dQ1 ∧ · · · ∧ dQn ∧ dP1 ∧ · · · ∧ dPn
= det(J)dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn
= det(J)Vinitial

= Vinitial. (18)
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Physical interpretation of Liouville’s Theorem

The Liouville’s Theorem can be seen for one or multiple parti-
cles. If a particle moves around a periodic path, then the volume
spanned in the phase space will be constant in time. We can see
this for example in a pendulum: Single Particle Video.

The Theorem applies also for a group of particles. If we start from
a configuration spanning a certain volume in the phase space, its
evolution will preserve such a volume: Multy Particle Video.
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Electromagnetic Hamiltonian

In the next lectures we will focus on a specific Hamiltonian, this
is the Hamiltonian of an electrically charged particle that travels
in an electromagnetic field. We assume that the electric field E
and the magnetic field B are written in terms of potentials as

E = ∇φ(q) (19)

B = ∇×A(q) (20)

then the Hamiltonian associated to a particle with a charge qc
interacting with the fields E and B is

H =
(p− qcA(q))2

2m
+ qcφ(q). (21)
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Exercise: Lorentz Force

We can derive the Hamiltonian (21) in several ways, but none
of them is a warranty that we are representing the correct phys-
ical behaviour. The only possibility is to verify the generated
equations of motion experimentally.

We know, from experiments, that the Lorentz force is correct, so
we can prove that the Hamiltonian is correct if we show that

H =
(p− qcA)2

2m
+ qcφ (22)

generates the Lorentz force

F = qc(E + v ×B) (23)

when the fields are expressed with the conditions

E = ∇φ (24)

B = ∇×A. (25) 18



Charged Particles Hamiltonian

Finally we will not use exactly the Hamiltonian (21) but we will
change the coordinates to a frame that is more suitable for a
bunch of particles traveling in a particle accelerator as in figure.
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Charged Particles Hamiltonian

x and y are simply the distances with respect to the reference
particle and are unchanged compared to the laboratory frame.
If s is the space traveled by the reference particle in a time t
then the z coordinate of a particle is z = s

β0
− ct where β0 is the

speed of the reference particle with respect to c. The transverse
momenta are given by px = βxγxmc+qcAx

p0
, py =

βyγymc+qcAy
p0

, while
the longitudinal momentum is simply the energy deviation from
the reference partilce δ = E

cp0
− 1
β0

where p0 is the total momentum
of the reference particle p0 = β0γ0mc. The magnetic field is also
scaled with the reference momentum such as a = qc

p0
A.
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Charged Particles Hamiltonian

With this new set of coordinates we can write the Hamiltonian
of a charged particle that travels in a particle accelerator as

H =
δ

β0
−

√(
δ +

1

β0
− qcφ

cp0

)2

− (px − ax)2 − (py − ay)2 −
1

β2
0γ

2
0

−az. (26)

The full derivation of Eq. (26) it is not straightforward and it is
well detailed in the Chapter 2 of [3].
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Solutions

Solutions to proposed exercises.
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Solution: from Hamilton to Newton equations

Assuming that p and q are the canonical varialbes in one dimen-
sion, prove that if T = p2

2m and V = V (q) the Eqs. (2) are
equivalent to the Eq. (1) (the solution can be easily extended in
many variables).
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Solution: from Hamilton to Newton equations

H =
p2

2m
+ V (q) (27)

the Hamilton equations are

q̇ =
∂

∂p

[
p2

2m
+ V (q)

]
=

p

m
(28)

ṗ = − ∂

∂q

[
p2

2m
+ V (q)

]
= −∂V (q)

∂q
(29)

and deriving the Eq. (28) with respect to time we have the New-
ton equation in 1 dimension

mq̈ = −∂V (q)

∂q
. (30)
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Solution: the free particle

Calculate the trajectory of a free particle, i.e. V = 0 with the
classical Hamiltonian

H =
p2

2m
(31)

and with the relativistic Hamiltonian

H =
√
p2c2 +m2c4. (32)
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Solution: the free particle

For the classical Hamiltonian we have

q̇ =
∂

∂p

p2

2m
=

p

m
(33)

ṗ = − ∂

∂q

p2

2m
= 0 (34)

whit the solutions

q(t) =
p0

m
t+ q0 (35)

p(t) = p0 (36)

with q0 = q(0) and p0 = p(0). This is the usual inertial motion
with constant speed and no acceleration.
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Solution: the free particle

For the relativistic Hamiltonian we have

q̇ =
∂

∂p

√
p2c2 +m2c4 =

pc√
p2 +m2c2

(37)

ṗ = − ∂

∂q

√
p2c2 +m2c4 = 0. (38)

Recalling that the relativistic momentum p = γβmc and that
γ2 − 1 = γ2β2 we have

q̇ =
p

γm
(39)

ṗ = 0 (40)

The relativistic particle has exactly the same equations of motion
of the classic particle, the only difference is that its mass now
is γm and depends on its velocity as predicted by the Einstein’s
theory.
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Solution: Determinant of Symplectic matrix

Prove that if J is symplectic, then

det(J) = 1. (41)

28



Solution: Determinant of Symplectic matrix

It is easy to see that det(J) = ±1 because from Eq. (8) we have

det(JTSJ) = det(S) (42)

but det(S) = 1 and det(JT ) = det(J) so the equation is

det(J)2 = 1 (43)

that means that the determinant can be ±1.

To prove that the determinant is 1 is a bit more complicate. We
start noticing that

det(JTJ + I) > 1 (44)

because JTJ is symmetric and positive definite.
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Solution: Determinant of Symplectic matrix

We then use the symplectic condition to calculate the inverse of
JT as JT−1

= SJS−1 to write

JTJ + I = JT (J + SJS−1). (45)

Now we will search a factorization of the quantity J + SJS−1.
We write it in blocks of N ×N matrices as

J + SJS−1 =

(
J1 J2

J3 J4

)
+

(
0 I

−I 0

)(
J1 J2

J3 J4

)(
0 −I
I 0

)

=

(
J1 + J4 J2 − J3

J3 − J2 J1 + J4

)
=

(
J14 J23

−J23 J14

)
(46)

where J14 = J1 + J4 and J23 = J2 − J3.
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Solution: Determinant of Symplectic matrix

We can now perform the complex factorization

J + SJS−1 =

(
J14 J23

−J23 J14

)
= (47)

1

2

(
I I

iI −iI

)(
J14 + iJ23 0

0 J14 − iJ23

)(
I −iI
I iI

)
.

We return to the determinants

det(JTJ + I) = det(JT ) det(J + SJS−1)

= det(J)|det(J14 + iJ23)|2 > 1 (48)

this means that det(J) has to be strictly positive and we
already knew that it can be only det(J) = 1.
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Solution: Lorentz Force

We can derive the Hamiltonian (21) in several ways, but none
of them is a warranty that we are representing the correct phys-
ical behaviour. The only possibility is to verify the generated
equations of motion experimentally.

We know, from experiments, that the Lorentz force is correct, so
we can prove that the Hamiltonian is correct if we show that

H =
(p− qcA)2

2m
+ qcφ (49)

generates the Lorentz force

F = qc(E + v ×B) (50)

when the fields are expressed with the conditions

E = ∇φ (51)

B = ∇×A. (52) 32



Solution: Lorentz Force

We write H in cartesian coordinates

H =
(px − qcAx)2 + (py − qcAy)2 + (pz − qcAz)2

2m
+ qcφ (53)

and we calculate the equations of Hamilton

ẋ =
∂H

∂px
=

(px − qcAx)
m

(54)

ẏ =
∂H

∂py
=

(py − qcAy)
m

(55)

ż =
∂H

∂pz
=

(pz − qcAz)
m

(56)
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Solution: Lorentz Force

ṗx = −
∂H

∂x
=

1

m

[
(px − qcAx)qc

∂Ax

∂x
+ (py − qcAy)qc

∂Ay

∂x
+ (pz − qcAz)qc

∂Az

∂x

]
− qc

∂φ

∂x
(57)

ṗy = −
∂H

∂y
=

1

m

[
(px − qcAx)qc

∂Ax

∂y
+ (py − qcAy)qc

∂Ay

∂y
+ (pz − qcAz)qc

∂Az

∂y

]
− qc

∂φ

∂y
(58)

ṗz = −
∂H

∂z
=

1

m

[
(px − qcAx)qc

∂Ax

∂z
+ (py − qcAy)qc

∂Ay

∂z
+ (pz − qcAz)qc

∂Az

∂z

]
− qc

∂φ

∂z
(59)

substituting (54,55,56) we have

ṗx = qcẋ
∂Ax
∂x

+ qcẏ
∂Ay
∂x

+ qcż
∂Az
∂x
− qc

∂φ

∂x
(60)

ṗy = qcẋ
∂Ax
∂y

+ qcẏ
∂Ay
∂y

+ qcż
∂Az
∂y
− qc

∂φ

∂y
(61)

ṗz = qcẋ
∂Ax
∂z

+ qcẏ
∂Ay
∂z

+ qcż
∂Az
∂z
− qc

∂φ

∂z
(62)
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Solution: Lorentz Force

we calculate finally the three components of the force deriving
with respect to time the Eqs. (54,55,56)

mẍ = ṗx − qcẋ
∂Ax
∂x
− qcẏ

∂Ax
∂y
− qcż

∂Ax
∂z

(63)

mÿ = ṗy − qcẋ
∂Ay
∂x
− qcẏ

∂Ay
∂y
− qcż

∂Ay
∂z

(64)

mz̈ = ṗz − qcẋ
∂Az
∂x
− qcẏ

∂Az
∂y
− qcż

∂Az
∂z

(65)

and substituting the Eqs. (60,61,62) we obtain the Lorentz force
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Solution: Lorentz Force

mẍ = qc

[
ẏ

(
∂Ay
∂x
− ∂Ax

∂y

)
+ ż

(
∂Az
∂x
− ∂Ax

∂z

)
− ∂φ

∂x

]
(66)

mÿ = qc

[
ẋ

(
∂Ax
∂y
− ∂Ay

∂x

)
+ ż

(
∂Az
∂y
− ∂Ay

∂z

)
− ∂φ

∂y

]
(67)

mz̈ = qc

[
ẋ

(
∂Ax
∂z
− ∂Az

∂x

)
+ ẏ

(
∂Ay
∂z
− ∂Az

∂y

)
− ∂φ

∂z

]
(68)

in vectorial format

F = qc (−∇φ+ v ×∇×A) (69)

F = qc (E + v ×B) . (70)
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