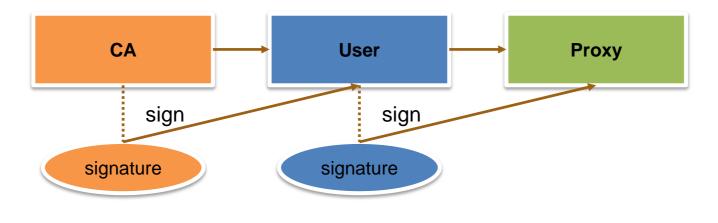

Delegation and authorisation

Grid services act on behalf of users

Why act on behalf of users?


- A "normal" cluster usually has local storage
 - Same user identity for jobs and data access
- On the Grid, storage is usually remote
 - Every time a job needs to read or write data, authorised remote connection is required
- A Grid cluster's own certificate is not enough
 - Users want to protect their data from unauthorised access
 - Users also don't want everybody to write to their storage share
- A job may have to be migrated to another cluster
 - Not quite implemented in reality, yet

Delegation: Act by proxy

- In real life, you sign a proxy document and certify it by a notary
 - Document says what actions can be performed on your behalf
- On the Grid, a proxy document is a <u>X.509</u> <u>certificate</u> signed by you
 - Since your certificate is in turn signed by a CA, proxy is also a trusted document
 - Proxy may contain a lot of additional information

Proxy certificate

- Proxy is an extension of the SSL standard
- Proxy contains both public and private keys
 - Not the same as users' keys, but derived from them
- Proxy needs no password (unlike usual PKI certificates)
- Proxy can not be revoked
- Proxies are used by Grid services, ٠ There is no need to to act on behalf of the proxy issuer transfer proxy Reduces the WAIT A MINUTE chance of getting stolen Proxies must have very short lifetime: Minimizes the damage A PRIVATE KEY **GETTING TRANSFERRED?!**

UNIVERSITY

Proxy creation

- A **<u>new</u>** private/public key pair is created for each proxy
 - When a proxy expires, a new one must be created to continue working
 - » Default expiration time is 12 or 24 hours
- A proxy is then constructed of:
 - Public certificate (with public key embedded)
 - » Certificate contains modified owner's Distinguished Name (has "*proxy*" appended to the name)
 - Owner's DN: /C=UK/O=Grid/OU=CenterA/L=LabX/CN=john doe
 - Proxy DN: /C=UK/O=Grid/OU=CenterA/L=LabX/CN=john doe/CN=proxy
 - » Certificate is signed by the proxy owner's **real** private key
 - » Certificate contains validity period
 - Private key
 - Optionally, <u>Attribute Certificates</u> extensions containing additional information

The tale of two proxies

- A user always has to create a proxy certificate P1
 - Technically, it can be sent to the server, but it is a security breach
- The server gets itself a <u>delegated</u> proxy P2 for each user:
 - 1. <u>Server</u> generates a **new** private/public key pair
 - 2. Server returns the generated public key as a <u>certificate request</u> to the user
 - User's tool signs that public key and inserts user information (DN etc), thus generating a public certificate. It uses the private key of proxy P1 for performing signing operation.
 - » It can also use the actual private key, but that will require entering password every time!
 - 4. User's tool sends the signed public certificate back to the server
 - 5. Server adds generated private key to that certificate and creates a <u>delegated</u> proxy **P2**

There can be even three proxies

- If a server needs a new proxy, and you are not available to sign it, a **MyProxy** server can act on your behalf
 - MyProxy is a technology provided with the Globus distribution
 - » MyProxy servers are offered by some Grids; none in the Nordics though
 - Of course, it needs a delegated proxy, too
- The procedure is as follows:
 - 1. A proxy P1 is created by the user, as usual
 - 2. User contacts a MyProxy server, which creates a new key pair and then a **long-living** delegated proxy **P2**
 - 3. Another Grid service generates an own key pair, and requests MyProxy to create the certificate on your behalf; this leads to a short-living delegated proxy **P3**

» User has to provide a password to MyProxy

Do I have to do all this by hand?

- Luckily, all authentication and delegation procedures are a part of the protocol
- Before every Grid activity, you just have to create a proxy. Some common tools are:
 - By ARC: arcproxy
 - By Globus: grid-proxy-init and myproxy-init
 - By EMI VOMS: voms-proxy-init
- Proxies expire quickly!
 - Resist temptation to create long-living proxy: this will undermine your security
 - ARC has a tool to renew a proxy that has been sent away
 - » Actually, an entirely new proxy is generated and sent to the job
 - MyProxy service can be used to deal with expiring proxies

Authorisation

- Authentication = passport; authorisation = visa
 - Having a valid passport is not enough to enter a country
 - Having a valid proxy is not enough to access computing or storage resources

All Nationalities

Passkontroll Passport control

EU and Schengen only

- Authorisation can be by person or by group
 - By person: a person with Swedish visa can enter Sweden
 - By group: everybody with a EU/EEA/US passport can enter Sweden
- Authorisation on the Grid:
 - By person: your DN is in the list on a cluster (matched to your proxy DN)
 - By group: your DN is in the Virtual Organisation (VO) list
 - » Your proxy has this VO's Attribute Certificate

Virtual Organisation

- A Grid Virtual Organisation (VO) is simply a group of people
- VO attributes:
 - VO must have a manager who approves membership
 - VO must have a set of rules policies regulating the membership
 - VO must have means of providing an up-to-date list of members' DNs to Grid services
 - VO may have groups and roles
 - » Useful to define shares and privileges
 - VO may run a service that issues Attribute Certificates (AC)
 - » An AC asserts VO membership of a user, as well as their role, group, or other attributes
 - » An AC is digitally signed by the issuing VO
 - » An AC is included into the proxy

Why use the VO concept?

- Simplicity
 - It is easier to authorise a VO than all its members individually
 - » To authorise users individually, all their DNs must be known
 - » To authorise a VO, only its URL is needed
- Flexibility
 - VO members may come and go, and Grid services don't have to change a thing
- Scalability
 - It is easier to negotiate service levels with few VO managers than with all individual users
 - » Different VOs may have different quotas or shares
 - » Different roles inside a VO may have different privileges
- Delegation of responsibility
 - VO managers are responsible to check eligibility of users
 - Resource owners trust VO managers
 - » If some VO users misbehave, entire VO can lose access

VO Management Service (VOMS)

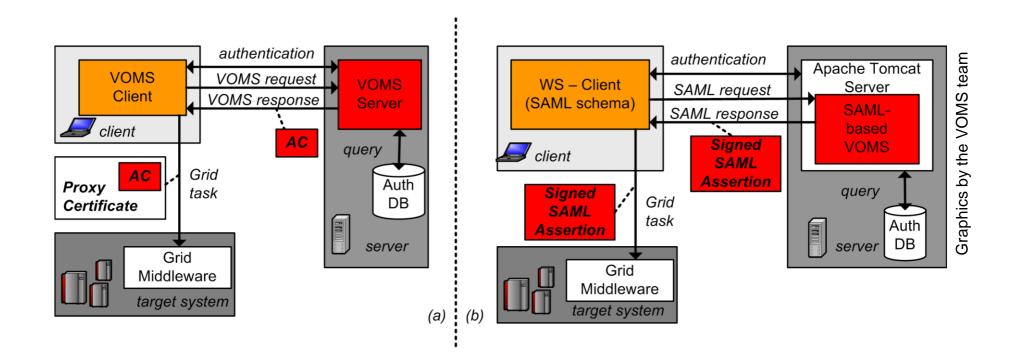
- A trivial VO can be simply a file on the Web with user DNs
- For large VOs, dedicated <u>VO Management Service (VOMS)</u> exists (distributed with EMI)
 - Has a database of users
 - » Each user can have a number of VO-specific attributes: group, role, alias etc
 - » VO membership can be time-limited
 - Has a management interface
 - » Registration form for new users
 - » Management tools for administrators
 - Has a capability to issue Attribute Certificates upon request
- VOMS, like any Grid service, has a certificate and operates over a secure connection

How to make use of VOMS

- A Grid cluster administrator may use VOMS database to synchronise the list of authorised DNs
 - Alternatively, a cluster can be configured to check every user's proxy for VOMS extensions
- A Grid user must become a member of a VO
 - If none exists for you, just set it up
- If VO uses a VOMS server, VOMS-extended proxies must be created
 - The proxy creation tool must be pointed to a VOMS server
 - Upon proxy creation, the tool contacts VOMS and receives an AC asserting VO membership, role etc
 - The AC is then embedded into proxy, and everything is signed by the owner's private key
 - » AC can not be embedded in normal PKI certificates or keys
 - » AC lifetime can be different from that of the proxy itself

Groups and roles

- VOMS-extended proxy is used for authentication, authorisation and delegation just like a normal proxy
- Groups and roles are some of the most frequently used attributes in VOMS
 - A group is a subset of the VO (e.g., all students)
 - A user can be a member of any number of groups, all of them will be listed in the AC
 - A role is indication of a privilege (e.g. a VO manager)
 - Roles are attached to groups (e.g. each group may have a manager role)
- Groups and roles are specified in a Fully Qualified Attribute Name (FQAN)
 - FQAN format: <group name>[/Role=<role name>]
 - FQAN example: /physics/astro/Role=tester
 - FQANs are used to assign agreed priorities, quotas etc on clusters and storage



When VOMS proxy is not needed

- Working with storage usually needs no delegation
 - A normal X.509 certificate could well be sufficient in many cases
 - But if a VO wants to limit access to its data, storage may still be configured to inspect VOMS AC
 - » A proxy will be needed because AC can not be embedded into a normal certificate
- Instead of an AC, a VO management service can issue assertions using Security Assertion Markup Language (SAML)
 - SAML assertions are documents that can be transferred along with normal X.509 credentials
 - Not widely used on the Grid (yet)
- Authorisation can even rely on an external policy decision point (PDP)
 - Grid cluster or storage will only need yes/no answer from a PDP

VOMS AC compared to SAML

Exercises

- Create a simple proxy using arcproxy
 - Need to know the location of your certificate (both .pem or .p12 format OK)
 - » Default location: **\$HOME/.globus/**, create it and copy your keys there
 - » Default names: **userkey.pem** for the private key, and **usercert.pem** for the certificate
 - Need to know the location of the trusted CA files
 - » Default location: /etc/grid-security/certificates , check that it exists
 - If defaults locations and names are used, arcproxy will work right away; if not, issue the full command with all the necessary parameters specified explicitly:

arcproxy -C certfile_path -T CAfiles_path -P proxyfile

- Inspect your proxy with arcproxy -I
 - Compare certificate DN and proxy DN
 - Locate the proxy file, check proxy permissions, compare with key permissions
- Generate proxy with one hour lifetime: use -c validityPeriod=3600

Exercises

- Join NorduGrid VO:
 - Load your .p12 certificate into the browser and make sure you can read your email
 - − Visit <u>http://www.nordugrid.org</u> → "Grid access" → "User groups (VOs) → nordugrid.org → "Membership request"
- Create a file containing the VOMS server contact string (e.g. my.vomses)
 - Default file: \$HOME/.voms/vomses (there are other defaults, but this one is most common)
 - Copy the VOMSES string from the "Configuration Info" at the VOMS Admin web site
- Create a VOMS-extended proxy (extended proxy with VO information):

arcproxy -S nordugrid.org -P /tmp/my_voms_proxy1

- For advanced users who don't like defaults:

```
arcproxy -C your_certfile -P /tmp/voms_proxy1 -V my.vomses -S
nordugrid.org
```

• Request a proxy with a non-granted role, check how your request is rejected:

arcproxy -S nordugrid.org:/nordugrid.org/Role=VO-Admin

inspect a NorduGrid-extended proxy; pay attention to proxy lifetime and VOMS AC lifetime:

```
arcproxy -I -P /tmp/my_voms_proxy1
```

2014

