Scientific data management

Storage and data management components

UNIVERSITY

More than just storage

Scientific data management is much more than just storage

Data management on YouTube (by NYU)

Data Sharing and Management Snafu in 3 Short Acts by Karen Hanson, Alisa Surkis & Karen Yacobucci NYU Health Sciences Libraries August 3, 2012 (Last Update: December 12, 2012)

Storage requirements

- Large enough storage is needed
 - From Gigabytes for some to Petabytes for some others
- Large enough bandwidth between the apparatus, storage, data processing facility and the user
 - Terabits per second these days
- Controlled write, read and list access
 - From password to certificates and VOs to federated identities
- Encryption: for data, or transfer, or both, or none
- Adequate space management
 - quotas, space recovery utilities
- Transfer, replication and migration tools
 - Per file, per logical group, per database

Storage requirements (continued)

- Backup
 - a large range of requirements: from basic RAID to multiple replicas, local and remote, tapes or other media, with recovery of older versions in case of accidental modifications etc
- Indexing of what is stored
 - From basic POSIX information listing to metadata catalogs, adequately protected from unauthorised access
- Logical organization in terms of metadata-based grouping
 - possibly reflected in physical grouping for optimization
- Monitoring and statistics collection (accounting)
 - Various usage parameters as a function of time, access monitoring and such - all protected from unauthorised access

Data processing requirements

- Accessibility of data from a computing resource
 - streaming and/or caching
 - copying for a direct access: single files, logical groups, per job or per site
 - querying in case of databases
- Persistent and unique identifiers
 - per file, per logical group, per database and such
- Mechanisms to match/resolve identifiers to physical addresses
 - For streaming, copying, querying and such
- Well-defined (formalized) data formats/structures and tools for conversion between (at least some of) them

Preservation requirements

- Continuous storage upgrade and media migration
- · Identifiable authorship of the data
 - per file, logical group, database etc
- Provenance information
 - original data taking conditions, possible modifications, changes of ownership, changes of access rights etc
- Preservation of data format description
 - possibly encapsulated in data

Preservation requirements (continued)

- Preservation of processing algorithms and/or workflows
- Preservation of computing environments used to produce or process the data
- Preservation of metadata
- Preservation of accessibility:
 - if possible, preservation of protocols
 - when protocols change, consistent re-mapping of data identifiers to new protocols
 - long-term access rights management: granting write access to curators, migration to new AAI technologies, revoking access rights of non-authorized individuals, opening up for public read and list access

Sharing requirements

- Access control managed by authorized users
 - From dedicated managers for large research groups, to individual researchers who produce the data
- Networked access via industry-standard protocols and means
 - like http/webdav today, remotely mounted or synched file systems, etc
- Discovery tools relying on metadata
 - Including authorship, provenance and other info
- Upload tools
 - From simple copy or file-by-file transfer, to portals and other utilities dealing with logical groups, databases etc

What does Grid offer today for data management

Storage Elements (SE)

- Disk/tape storage pools managed by storage middleware (e.g. **dCache**)
 - » Internal space management, shares, some backup etc
 - » Grid access control
 - » Storage federation (common name space across different SEs)
 - » Accounting and information
- File transfer service (FTS by EMI)
- Data and metadata indexing services
 - Simple file catalogue (LFC by EMI)
 - Application-specific metadata catalogues
 - » Attempts to create generic catalogues failed
- Client tools for the above

Graphics adapted from Patrick Fuhrmann

UNIVERSITY

103

dCache storage solution

dCache details

Story of Storage Resource Manager (SRM)

- The first Grid standard
 - Introduced as an abstraction on top of the multitude of transfer protocols (gsiFTP, https etc)
- SRM-enabled service is meant to provide:
 - Transfer protocol negotiation
 - Dynamic Transfer URL allocation
 - Uniform access to heterogeneous storage, access permissions
 - Access to permanent and temporary types of storage
 - Space reservation
 - Reliable transfer services
- The specification was never implemented to a full extent
 - Gradually losing importance, as https starts to dominate

Grid file names

- LFN example: "data2014-1-raw"
- GUID: 26851250-b9f8-11e3-a5e2-0800200c9a66 ٠
 - Globally Unique Identifier; can denote a dataset or a single file
- SURL: srm://dcache.swegrid.se/lund/astro/data2014-1-raw.xls ٠
- TURL: https://server5.liu.se/pool3/12nsd3/data2014-1-raw.xls

Some other data management services

- LHC File Catalogue (LFC)
 - maps LFNs to GUIDs to SURLs
 - Can store some file metadata (size, checksum etc)

» metadata: data about data

- File Transfer Service (FTS)
 - Performs massive file transfers between Storage Elements on behalf of Grid users
 - Makes use of X509, SRM, GridFTP, https
- Both LHC and FTS are rarely used outside CERN
 - Are designed for handling very large amounts of files

ARC data management tools

- ARC comes with a set of basic file management tools
 - Use X509 Grid security
 - Support most known protocols, including SRM
 - » Can also interact with LFC and some area-specific data catalogues
 - Can not interact with FTS, neither can be used for storage management
- Commands:

- arcls, arccp, arcrm, arcmkdir

Nordic Grid infrastructure: distributed storage

Oxana Smirnova, Dept. of Physics

SweStore uses Grid technologies

- SweStore is a Swedish national long-term storage for various researchers
 - <u>http://snicdocs.nsc.liu.se/wiki/SweStore</u>
- Has storage pools distributed over several centers
 - Part of it in LUNARC; central services in Linköping
- Uses dCache, and recently iRODS
 - iRODS stands for Integrated Rule-Oriented Data System
 - » Provides higher-level functionality than dCache (can use dCache as storage)
 - » Makes no use of Grid Security Infrastructure
- Practically any research group in Sweden can apply for a storage space at SweStore
 - Some groups have dedicated storages within SweStore

Exercises

- Goals: use **arc*** command line tools to upload/download files
 - Start: browse SweStore using a regular browser (requires certificate in the browser) <u>https://webdav.swestore.se/nordugrid</u>
 - arcproxy -S nordugrid.org:/nordugrid.org/tutorial/Role=student
 - arcls gsiftp://gsiftp.swestore.se/nordugrid/tutorial
 - arcls -l gsiftp://gsiftp.swestore.se/nordugrid/tutorial
 - arcls --metadata
 gsiftp://gsiftp.swestore.se/nordugrid/tutorial/ARC-logo.png
 - arccp --recursive=999
 gsiftp://gsiftp.swestore.se/nordugrid/tutorial/xrsl/ xrsl/
 - The following should fail:
 - » arcmkdir gsiftp://gsiftp.swestore.se/nordugrid/tutorial/newdir
 - » arcrm gsiftp://gsiftp.swestore.se/nordugrid/tutorial/ARC-logo.png

Exercises

- For advanced students: try to install ARC Graphical Clients from <u>http://sourceforge.net/projects/arc-gui-clients/</u>
 - Needs cmake, libqt4-dev and nordugrid-arc-dev
- For those who did not manage to submit jobs last time, use the downloaded .xrs1 files to do so:
 - arcsub -c arc-iridium.lunarc.lu.se hello_grid.xrsl
 - arcls <jobID>
 - arcstat <jobid>

