
Active Learning:

Lunarc/Iridium, batch systems
COMPUTE RESEARCH SCHOOL COURSE NTF004F

Basic concepts of parallelism

Outline

• Multi-core computing in a nutshell

– motivation, terminology, difficulties

• Handy tools for remote sessions

– ssh, screen

• Riding on the clusters

– Batch system basics

• Task farming

– Scaling experiment

VT 2019 3

What is parallel computing?

• Traditional computing: serial execution of a single
stream of instructions on a single processing
element

• Parallel computing: simultaneous execution of
stream(s) of instructions on multiple processing
elements

– Non-sequential execution of a computational
task

– (part of) the problem solved by simultaneous
subtasks (processes)

– Relies on the assumption that problems can
be divided (decomposed) into smaller ideally
independent ones that can be solved parallel

VT 2019 4

What is parallel computing (cont.)?

• Parallelism levels (”distance” among the processing elements):

– Bit and Instruction level: inside the processors (e.g. 64 bits
processor can execute 2 32 bits operations)

– Multicore/multi cpu level: inside the same chip/computer.
The processing elements share the memory, system bus
and OS.

– Network-connected computers: clusters, distributed
computing. Each processing element has its own memory
space, OS, application software and data

» Huge difference depending on the interconnects: e.g.
High Performance Computing (supercomputers) vs. High
Throughput Computing (seti@home)

VT 2019 5

Some classifications

SMP vs. MPP (or the shared memory vs. distributed
memory debate):

• SMP: Symmetric Multi Processors system: shared
memory approach

– ”single box” machines, OpenMP programming
family

• MPP: Massively Parallel Processors system:
distributed memory, network-connected CPUs

– ”clusters”, MPI programming family (message
passing)

• SMPs are easier to program but scale worse than the
MPPs

VT 2019 6

Why parallel computing?

• It is cool

• Sometimes the problem does not fit into a single box: you need more
resources than you can get from a single computer

• To obtain at least 10 times more power than is available on your desktop

• To get exceptional performance from computers

• To be couple of years ahead of what is possible by the current (hardware)
technology

• The frequency scaling approach to increase performance does not work
any longer (power consumption issues):

– The new approach is to stuff more and more processing units into
machines, introducing parallelism everywhere

VT 2019 7

Measuring performance gain: the

Speedup
• In an ideal scenario a program running on P processing elements would

execute P times faster..., giving us a linear speadup

• Speedup S(n,P): ratio of execution time of the program on a single processor
(T1) and execution time of the parallel version of the program on P processors
(TP):

» In practice, the performance gain depends on the way the problem was divided
among the processing elements and the system characteristics.

• Amdahl’s law: gives an upper estimate for maximum theoretical speedup
and states that it is limited by the non-parallelized part of the code:

– alpha is the sequential fraction of the program

– e.g. if 10% of the code is non-parallizable, then the maximum speedup
is limited by 10, independent of the number of used processors (!)

VT 2019 8

The dark side
”the bearing of a child takes nine months, no matter how many women are assigned”

• Not everything is suitable for parallelization

• Complexity increases as more and more communication is involved:

– embarrasingly paralell -> coarse-grained -> fine-grained problem domains

• Parallel computing opens up new set of problems:

– Communication overheads

– Concurrency problems

– Synchronization delays

– Race conditions and dead locks

• Nobody wants to debug a parallel code...

• Developing & deploying a parallel code usually consume more time than the expected speedup

• A practical advice for parallelization:

– Unless you have an embarrasingly parallel problem, forget it

– If you are stubborn, then at least use an available parallel (numerical) library and start with the profiling (understanding) of

your program

– Wait for the holy grail of computational science: automatic parallelization by compilers

VT 2019 9

Now comes active learning

Accessing remote computers

VT 2019 11

MobaXterm

Task 1: Howto avoid loosing all your

work on a remote computer
IMAGINE that:

• You are being logged on a remote computer

• In the middle of a long task (e.g. compilation, download, etc..)

• Then, suddenly the network connection dies

• or you’d like to go home and continue the same work from your home desktop

Is there a way to avoid loosing all your work? How can one disconnect & reconnect to the same
”session” without the need to restart everything from scratch?

TODO: try to use the screen utility to keep your remote session alive. Launch screen and start
working in several screen session. Then, imitate a network failure and with the help of screen
resume your work on the remote machine.

screen allows you to

• Keep a session active even through network disruptions

• Disconnect and re-connect to a sessions from multiple locations (computers)

• Run a long remote running process without maintaining an active remote login session

VT 2019 12

Task 1: helpdesk
Use the Linux screen utility to manage remote screen sessions, connect, reconnect to active session, survive a network

failure

• Screen is started from the command line just like any other command

– [iridium ~]$: screen

– You can create new “windows” inside screen, ctr+a c then rotate, switch between windows with ctrl+a n

• Listing your screens:

– [iridium ~]$: screen -list

• Disconnecting from your active session, screen (your task keeps running!):

– [iridium ~]$: screen –d or ctrl+a d

• Re-connecting to an active screen session (re-attach to screen):

» [iridium ~]$: screen –r

– Terminating, logging out of screen

» type exit from inside all your active screen sessions

– Using screen to log your activity:

» [iridium ~]$: screen –L or ctrl+a H turns on/off logging during a screen session

VT 2019 13

Task 2: Understand the layout of a

cluster: Head node vs. Worker node

• Head (login) node: pptest-iridium.lunarc.lu.se

• Worker nodes: n3, n4, ..., n12

TODO: try to use various linux commands to discover the structure of the
iridium cluster:

Hint: you can „login” to a node by using the interactive command

- is there shared file system?

- are the nodes identical (cpus, memory)?

- how about network connectivity?

- how about user accounts?

- how about the operating system, available software?

- how about running processes, cpu-load?

VT 2019 14

Cluster

B
a
tc

h

s
y
s
te

m

CPU CPU

CPU CPU

CPU CPU

CPU CPU

…

Head node Worker nodes

Task 3: Understand the basic concept of

„resource schedulling” by using SLURM

• There is no infinite size cluster

– Always limited number of cores, memory, walltime

– Workload Management System, Scheduller, Batch System:
SLURM

TODO: get greedy and eat all the cake! Here is the „menu”:

• slurm.schedmd.com/quickstart.html

• lunarc-documentation.readthedocs.io/en/latest/batch_system/#first-
example-for-a-job-submission

Hint: grab a piece of cake by creating a so-called job on the cluster

– Find out howto create (submit) a job. Hint: use the sbatch command

– Find out the state of the cake. Hint: use sinfo, squeue

– Find out how to control the size of a piece of cake? (number of nodes,
cores, memory, etc..)

– Find out how to put back a piece of cake (cancel job)

– Find out how to obtain status of the job, receive notification

VT 2019 15

Task 3: helpdesk

• List SLURM queues (partitions)

– > sinfo

• Create file myscript (use provided
examples)

• Submit simple jobs and check their status:

– > sbatch myscript

– > cat slurm-<jobid>.out

– > squeue

– > scontrol show job <jobid>

• Repeat with multi core/node jobs

– sbatch –N4 myscript

– sbatch –n6 myscript

– In a multi-core advanced example, pay attention how jobs are distributed
across nodes and cores

• Receive notification on state changes using the directives within the scripts (not
enabled on iridium):

– #SBATCH --mail-user=fred@institute.se

– #SBATCH --mail-type=END (BEGIN, END, FAIL, REQUEUE, ALL)

VT 2019 16

Simple myscript:

#!/bin/sh

#SBATCH -J “simple job”

#SBATCH --time=1

echo “we are on the node”

hostname

who

sleep 2m

Multicore/node myscript:

#!/bin/sh

#SBATCH -J “multi job”

#SBATCH --time=1

srun hostname |sort

sleep 5m

Task 4: Understand the concept of work

directory, input & output of batch jobs

Unless it is a trivial „hello world” exercise, most of the real-life jobs

process some input data and produces output data. It is very important

to understand where all that data is located relative to the worker node.

TODO: Execute a non-trivial task as a batch job submitted to

SLURM that either reads in some data from a file and/or

generates some output. As a second example, use the

sysbench toolkit submitted as a batch job to measure IO

performance on various filesystems.

• Find out what happens to the standard output and standard error of

the „executable”

• Find out what is the execution directory on the Worker Node

• Find out where the output files are placed.

• Use special variables understood by SLURM to place your job into a

specific directory (SLURM_SUBMIT_DIR, TMPDIR)

• Execute the sysbench --test=fileio testkit as part of a batch job to

measure disk performance

– Info and manual about sysbench:

wiki.gentoo.org/wiki/Sysbench

VT 2019 17

Task4: helpdesk

VT 2019 18

Stdout/Stderr script:

#!/bin/sh

#SBATCH -J "ioperf"

#SBATCH --time=4

#SBATCH -o ioperf_%j.out

#SBATCH -e ioperf_%j.err

echo "we are on the node and testing io"

hostname

cd $TMPDIR

mkdir testdir

cd testdir

pwd

sysbench --test=fileio --file-total-size=4G prepare

sysbench --test=fileio --file-total-size=4G --file-test-mode=rndrw --max-time=120 --max-requests=0 run

sysbench --test=fileio --file-total-size=4G cleanup

Sysbench myscript:

#!/bin/sh

#SBATCH -J “ioperf”

#SBATCH --time=10

echo “we are on the node”

hostname

who

sleep 2m

Task farming

Implementing trivial parallelism with a

master –worker system

• With a help of a master script you are going to execute X number of subtasks on Y number
of processing units

• The master script (master.sh) takes care of launching (new) subtasks as soon as a processing
element becomes available

• The worker.sh script imitates a payload execution that corresponds to a subtask

Steps:

1. Copy the scripts to a new directory on pp-test-iridium

2. Set the problem size (NB_of_subtasks) and the number of processing elements (#SBATCH
-n) in the master.sh, the payload size (i.e. How long a subtask runs, PAYLOAD) in the
worker.sh

3. Launch the taskfarm (sbatch master.sh), monitor the execution of the subtasks (squeue –j
<jobid> -s) and finally check how much time the taskfarm processing required (check the
output files of the subtasks and the slurm job)

4. Repeat the taskfarming with modified parameters, What is the speedup?

VT 2019 20

