LUND

Z

Rucio Tutorial

 NTF004F2019
 Florido Paganelli florido.paganelli@hep.lu.se

Why Rucio

- Very popular among CERN experiments, getting popular also for others
- Uses modern technologies
- It's open source
- Intensively developed

11. DUNE Robert Illingworth (Fermi National Acce...) 3 28/02/2019, 10:10 Community presentations

8. ATLAS Alessandro Di Girolarno (CERN) 3 28/02/2019, 11:00 Community presentations

9. CMS Experience Migrating to Rucio Lefic Vaandering (Fermi National Acce...) 28/02/2019, 11:20 Community presentations

13. Evaluation of Rucio for Belle II Paul James Laycock (Brookhaven Nationa...) 28/02/2019, 11:40 Community presentations

26. FTS news and plans Andrea Manzi (CERN) 28/02/2019, 12:00 Community presentations

10. The XENONNT Computing Scheme Boris Bauermeister (Stockholm University) 28/02/2019, 12:20 Community presentations

14. Icecube A PATRICK MEADE (University of Wiscon...) 3 28/02/2019, 14:00 Community presentations

17. CTA Use Case for the archive frederic Gillardo 28/02/2019, 14:20 Community presentations

27. ATLAS Rucio database characteristics A Gancho Dimitrov (CERN) 29. Evaluating Rucio for an SKA Regional Centre Rohini Joshi (University of Manch...) © 28/02/2019, 15:00 Community presentations

18. NSLS-II Carlos Fernando Gamboa (Brookhaven Nationa...) 28/02/2019, 16:00 Community presentations

19. XDC Paul Millar 28/02/2019, 16:20 Community presentations

28. CERN Tape Archive initial deployment and testing Julien Leduc (CERN) 28/02/2019, 16:40 Community presentations

20. LCLS-II Wilko Kroeger (SLAC) © 28/02/2019, 17:00 Community presentations

3. Keynote: The Nordic e-Infrastructure Collaboration (NeIC) Gudmund Høst (NeIC) O 01/03/2019, 09:00

https://neic.no

22. EGI Data Management requirements, Feedback from EGI communitie A Mr Baptiste Grenier (EGI Foundation) O 01/03/2019, 09:30 Community presentations

23. LSST & Fabio Hernandez (IN2P3 / CNRS comp...), Bastien Gounon O 01/03/2019, 09:50 Community presentations

What does it do

- Data management services
 - Creation of collections of data
 - Definition of datasets
 - Replication
 - Metadata management
 - Usage Logging
 - Access to **existing** storage elements
 - Experiments need to **already have some storage** with an interface Rucio can interact with
 - Download/upload
 - Definition of access control rules/systems
 - It hooks to pre-existing infrastructures (PKI, Tokens...)

Architecture

- Open source
- Documentation is not very clear :(
- Python CLI/API clients
- Collection of python scripts and daemons
- Undocumented:
 - Apache web server
 - Data is stored in a database can be hooked to different DBs.

- Deployment:
 - Distributed as a PiPY package, but suggested deployment is as a docker container...
 - Most support and deployments seems to be done ad-hoc for each experiment by the developers themselves.

Instructions:

https://rucio.readthedocs.io/en/latest/rucio_demo.html

- Showcases Rucio features, but does not really clarify what they are for. I'll try to do during this lecture.
- To install it, one needs

The demo

- A copy of rucio's git code
- docker-composer
- The composer installs and starts
 - A rucio container based on Linux CentOS7

- We will login into this one

- A mysql database docker container
- The demo is a typical docker app.

The demo – installation

- There is a **bug** in the official repository that prevents the demo to work. Luckily this is open source hence I could fix the bug.
- Find a spot in your disk where the repository will be created. A folder named **rucio** will be created after this operation, where we will run most docker commands.
- Fetch the working version from my GIT fork: git clone https://github.com/floridop/rucio.git cd rucio git checkout emergencyfix

Run docker-compose

sudo docker-compose --file etc/docker/demo/docker-compose.yml up -d

- You can now proceed with the installation instructions in the official docker page "Checking the Containers" https://hub.docker.com/r/rucio/demo
- And we can go back to the readthedocs page mentioned in the previous slide.

Docker-compose.yml

Docker-compose.yml

Dockerfile

FROM rucio/rucio-systemd-cc7

9

Dockerfile

RUN mkdir /var/log/rucio **RUN** mkdir /var/log/rucio/trace RUN chmod 777 /var/log/rucio

ENV PATH \$PATH:/opt/rucio/bin 🔫

```
ADD httpd.conf /etc/httpd/conf/httpd.conf
ADD rucio.conf /etc/httpd/conf.d/rucio.conf
ADD certs/ca.pem /opt/rucio/etc/web/CERN-bundle.pem
ADD certs/ca.pem /opt/rucio/etc/web/ca.crt
ADD certs/usercert.pem /opt/rucio/etc/web/usercert.pem
ADD certs/server.crt /etc/grid-security/hostcert.pem
ADD certs/server.key /etc/grid-security/hostkey.pem
RUN chmod 400 /etc/grid-security/hostkey.pem
ADD setup_demo.sh /
ADD setup data.py /
ADD wait-for-it.sh /
WORKDIR /opt/rucio
RUN rm /etc/httpd/conf.d/ssl.conf
                                              Remove default
/etc/httpd/conf.d/autoindex.conf
                                              webserver config
/etc/httpd/conf.d/userdir.conf
/etc/httpd/conf.d/welcome.conf
                                               network
EXPOSE 443 -
                                                                Rucio CLI
```

Add rucio demo webserver configuration files to image

The running containers

- demo_rucio Runs the rucio server and daemons, contains the clients. We will use if for the tutorial.
- mysql/mysql-server:<tag> Used by Rucio to store any kind of information. We will not use this machine directly but through the rucio commands.

The scripts

- setup_demo.sh
 - Generates two datasets with two files each, named AOD.<somehash> , using setup_data.py
 - Creates two rucio-managed Storage Elements on a local filesystem:
 - /tmp/SITE1_DISK
 - /tmp/SITE2_DISK
 - Creates scopes and Datasets and adds the files to them.
 - Creates two rucio users root and jdoe
 - All the above is done through setup_data.py
- => Some sections "Configuring Rucio" in the demo documentation can be skipped.

Quick terminology recap

- FILE: well, you know.
- **DATASET**: a collection of files
- **CONTAINER**: a collection of datasets
- **DID**: full name for a a file, a dataset or a container, in the form SCOPE:NAME
 - Same as Logical File Name LFN
- **SCOPE**: beginning of each DID name, defines an authoritative area. Users have their own scope.
- **RSE**: Rucio Storage Element, a logical representation of some physical storage.
- Meta-data attributes: strings that describe objects
- **REPLICA**: a managed copy of a file

Login into the rucio container

- sudo docker exec -it demo_rucio_1 /bin/bash
- rucio -h shows a list of commands. TAB autocomplete will work, but sometimes will also just give you the content of the folder you are in.
- rucio <command> -h shows a list of options for a given command. TAB autocomplete will work, but sometimes will also just give you the content of the folder you are in.

Rucio basics

Execute the following commands and check their output.

- rucio whoami
 - Shows info about your current user.
- rucio list-rses
 - Shows info about existing Rucio Storage Elements.
- rucio list-rse-attributes <RSE>
 - Shows RSE attributes. These can be used to help the researcher identify where certain data is stored.
- rucio list-rse-usage <RSE>
 - Shows info about the space used in the RSE (but not the available space!!!)

Rucio scopes, datasets and files

- rucio list-datasets-rse <RSE>
 - Shows the available datasets on a given RSE
- rucio list-scopes
 - Shows info about existing scopes, which are labels composing the beginning of a name of a dataset or file. They can be used to identify the kind of data you're working on, or the subject who generated it. Usually each user has their own scope.
- rucio list-dids <DID-espression>
 - A DID-expression is always of the form SCOPE:NAME.
 Rucio accepts wildcards, but it's not that versatile. In this tutorial we can use tests:* as an example.

Rucio scopes, datasets and files

- rucio list-files <DID>
 - Shows the files in a given dataset.
- rucio get-metadata <DID> [<DID>]..
 - Shows metadata of the specified DID.
- rucio download <DID>
 - Downloads a did, either an entire dataset or a single file inside it. Try! Browse the downloaded files/datasets.

Rucio managing files

- Let's create some file to upload in the tests scope. echo "This is my data file" > myowndata.txt
- Let's upload it as a file in the tests scope, in the first storage element.

rucio upload --scope tests --rse SITE1_DISK myowndata.txt

- Where is the file? rucio list-dids tests:* rucio list-dids tests:myownfile.txt ...?????
- rucio list-rules --account=root
 definitely weird.

Rucio managing datasets

- Let's add our file to an existing dataset rucio attach <destinationdataset> tests:myowndata.txt
- Let's check that it is now in the list of files: rucio list-files <destinationdataset>
- Let's download the dataset again... rucio download <destinationdataset> it's there!
- Run script that should be automated. /usr/bin/rucio-judge-evaluator --run-once
- Now the number of files is consistent. rucio list-rules --account=root

Rucio creating datasets

- Let's add our file to an existing dataset rucio add tests:myowndataset
- Let's check that it is now in the scope: rucio list-dids tests:*
- Should be empty: rucio list-files tests:myowndataset
- Let's remove the file from the other dataset and put it in the newly created rucio detach <olddataset> tests:myowndata.txt rucio attach tests:myowndataset tests:myowndata.txt rucio list-files tests:myowndataset
- Now the number of files is not consistent... rucio list-rules --account=root
- Run script to update the database again. /usr/bin/rucio-judge-evaluator --run-once

Rucio adding metadata

- Adding metadata to a dataset: rucio add-did-meta --did tests:myowndataset \ --key securitylevel --value topsecret
- Retrieve metadata information: rucio get-did-meta tests:myowndataset
- Find datasets with a given metadata information: rucio list-dids-by-meta --scope tests securitylevel=topsecret
- Remove metadata:

rucio delete-did-meta --did tests:myowndataset \
--key securitylevel

Rucio replication

- We will instruct rucio to copy our dataset over the second RSE. This is done via a *rule*: rucio add-rule tests:myowndataset 1 SITE2_DISK
- Now the number of files is not consistent... rucio list-rules --account=root
- Run script to update the database again. /usr/bin/rucio-judge-evaluator --run-once
- The actual replication happens via one of the daemons, but the documentation doesn't clarify...

Rucio administration

- Check user accounts rucio-admin account list
- Check user identities (ways to authenticate) and attributes (info)

```
rucio-admin account list-identities <accountname>
rucio-admin account list-attributes <accountname>
```

• Manage scopes

rucio-admin scopes add --account=root --scope myownscope
rucio-admin scopes list

• Add attributes to RSE:

rucio-admin rse set-attribute --rse SITE2_DISK \
 --key defaultusage --value replicaonly

• Check RSE info:

rucio-admin rse info SITE2_DISK

• List RSE by attribute:

rucio list-rses --expression 'defaultusage=replicaonly'

References

- Rucio documentation https://rucio.readthedocs.io/