The 16-channel Super-ALTRO Demonstrator

The 16-channel Super-ALTRO Demonstrator

People :

Luciano Musa ... S-Altro Specifications and Architecture Paul Aspell ... Coordinator of Demonstrator ASIC Design Hugo França-Santos ... ADC Eduardo Garcia ... Digital Signal Processing & Control Massimiliano De Gaspari ... Front-end, Integration, Tests

Presented at: CERN November 29th, 2011

• Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Alice TPC: MWPC readout

Time Projection Chamber:

track finding, momentum measurement, particle identification

Charge measurement: dE/dx Trigger rate: 200 Hz Pb-Pb, 1 KHz p-p

Multi-Wire Proportional Chamber: Induced signal (rise 100ps) with long ion tail (tenths usec)

Alice TPC: ALTRO

PreAmplifier Shaping Amplifier = PASA ALice Tpc Read Out = ALTRO Two-chips system, 4x7.5mm pads

M. De Gaspari

29th November 2011

Why an ADC and DSP based architecture?

Using a binary system, a threshold is set according to the noise level

Why an ADC and DSP based architecture?

With an "unfriendly" detector... Using a binary system, how can I set a threshold? Low threshold => always 1 High threshold => miss small events

Additionally: Pulse distortions, pile-up Baseline drift, error in the amplitude measurement => One ADC per channel and a Digital Signal Processor are needed

M. De Gaspari

29th November 2011

GEM, MicroMegas

Yulan Li, Beijing TPC School, 2008

GEM: electron-induced signal (20ns rise, 100ns pulse duration)

Paul Colas, Beijing TPC School, 2008

MicroMegas: fast collected signal with ion tail (100nsec)

Motivation for the Super-ALTRO

Alice, high-luminosity LHC:

increased multiplicity (quicker electronics) GEM for continuous readout

Linear Collider TPC (LCTPC), CLIC/ILC: pads as small as 1x4mm, GEM/MicroMegas readout, beam pulses CLIC = 1msec x 5Hz ILC = 177ns x 50Hz

S-ALTRO requirements:

Small size Handling signals of both polarities, variable gain and shaping time 10bit, 40MHz sampling Advanced DSP capabilities and zero suppression Power pulsing (peculiarity of CLIC/ILC beam timing)

- Motivations for the project
- System architecture
 - Pre-amplifier shaper (PASA)
 - ADC
 - Digital Signal Processor (DSP)
 - Clock tree
 - Top-level simulations
 - Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

System architecture

BD : 40 bit bidirectional bus; 20 bits address + 20 bit data. CTRL : 6 bits.

Sampling clock : max 40MHz. Readout clock : max 80MHz.

Project overview

Application: Designed mainly for the readout of the LC TPC. Tests of GEM and MicroMegas.

Fundamental data requirements: Signal charge, channel number and a time stamp. Data processing of 100us of data sampled at 10MHz (25us @40MHz).

Goal:

To demonstrate integration per channel of a low-noise programmable analog front-end, an ADC and Digital Signal Processor in a single chip. Prepare ideas for TPC readout in the ILC & CLIC (power pulsing).

Architecture:

Based on existing PASA + ALTRO electronics for the ALICE TPC.

Technology: IBM 0.13um CMOS 8RF DM.

• Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

PASA specifications

Single-ended input, differential output 4th order CR-RC⁴ filter Minimum Ionizing Particle: 4.8fC Dynamic range: 30MIP Noise: <1000e⁻

Based on PCA16 prototype by Gerd Trampitsch (different technology options)

Preamplifier/shaper

Programmability options:

- Polarity switch
- Shutdown switch
- Preamplifier enable
- Gain control (2 bits: 12-15-19-27mV/fC)
- Peaking time control (3 bits: 30-60-90-120ns) for GEM tests
- Bias decay (analog)

Size: 1100um X 210um

Power: 8.4mW/channel

Supply: 1.5V

29th November 2011

Feedback capacitance: C_f=790fF

Input capacitance: C_{in}=3pF

Feedback resistance: 2.3MOhm@1V, 300kOhm@0V BiasDecay

- Motivations for the project
- System architecture
 - Pre-amplifier shaper (PASA)
 - ADC
 - Digital Signal Processor (DSP)
 - Clock tree
 - Top-level simulations
 - Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Pipeline ADC

CERN ADC prototype by Hugo França-Santos:

10bit, 40MHz, 1.5V supply, 34mW power, 0.7mm² area

M. De Gaspari

29th November 2011

Pipeline ADC

- 10 bit pipeline architecture: 8 1.5-bit stages (redundancy) + 1 2-bit flash ADC

- -Optimized for 40MHz sampling frequency
- -No input S/H (output spectrum of PASA is known no aliasing)
- -Double sampling (double set of sampling/multiplying caps)
- -Sampling/multiplying caps 500fF (first stage), 330fF (other stages)
- -V_{ref} 0.25V, 0.75V, 1.25V
- -Dynamic comparators setting thresholds at $V_{ref}/4$
- -Transmission gates with charge injection cancellation
- -Isolation analog/digital with BFMOAT and guardrings

Pipeline ADC: layout

First stage

Bias circuitry

Clock generator

Digital error correction

Size: 1500um X 500um

- Motivations for the project
- System architecture
 - Pre-amplifier shaper (PASA)
 - ADC
 - Digital Signal Processor (DSP)
 - Clock tree
 - Top-level simulations
 - Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

DSP functions

DSP design by Eduardo Garcia

Baseline Correction 1	Removes the systematic offsets that are introduced due to clock noise pickup and switching of the gating grid of the detector. A Pedestal Memory is used for storage of baseline constants which are used for look-up table correction of the baseline.
Digital Shaper	General-purpose digital shaper. Example: remove the distortion of the signal shape due to long ion tails
Baseline Correction 2	Reduces non-systematic baseline movements based on a moving average filter.
Zero Suppression	Removes samples that fall below a programmable threshold.
Data Format	Converts the 10bit data stream into 40bit words including time stamp.
Multi-Event Buffer	In order to reduce the dead time of the system, data are saved in a memory for later readout.

M. De Gaspari

29th November 2011

Baseline Correction 1

The IIR filter is only active outside the acquisition window and when there is no signal; it computes the baseline at the beginning of the acquisition window.

M. De Gaspari

29th November 2011

Baseline Correction 1

Fixed pedestal fpd. Variable pedestal vpd averaged outside the acquisition window (L1-L2), excluding pulses. Systematic offset f(t) stored in the Baseline Memory.

- Most useful modes of operation:
- din-fpd
- din-f(t)
- din-f(din)
- din-vpd-fpd
- din-vpd-f(t)
- f(t)-fpd \rightarrow very useful for test purposes

BC1: simulation

BC1 example test: using the Pedestal Memory to subtract a systematic pattern.

BC1 example test: using the IIR filter to remove slow drifts of the baseline.

29th November 2011

Digital Shaper (Tail Cancellation Filter)

$$F(z) = \frac{1 + L_1 z^{-1}}{1 - K_1 z^{-1}} \cdot \frac{1 + L_2 z^{-1}}{1 - K_2 z^{-1}} \cdot \frac{1 + L_3 z^{-1}}{1 - K_3 z^{-1}} \cdot \frac{1 + L_4 z^{-1}}{1 - K_4 z^{-1}} \qquad \forall \ 0 \le K_i, L_i < 1$$

Cascade of 4 first order filters.

Programmable coefficients L1-L4, K1-K4 set the poles and zeroes of the transfer function. Long signal tail or undershoot can be corrected by proper choice of these 8 coefficients. Internal resolution 12bits.

ALTRO: 20442 gates Super-ALTRO: 11217 gates (change in architecture)

Digital Shaper: simulation

DS example test: removing the undershoot of the analog pulse.

Baseline Correction 2

Global threshold + per-channel (noise) thresholds, to average only the baseline and not the pulses. Programmable number of samples (speed of the Moving Average Filter). SNR improved as compared to ALTRO, due to round-off instead of truncation.

M. De Gaspari

29th November 2011

BC2: simulation

BC2 example test: computing and removing a baseline fluctuation during the acquisition.

Zero Suppression

Per-channel threshold. Possibility to skip glitches. Possibility to store pre- and post-pulse samples. Possibility to merge together consecutive pulses.

Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Clocking scheme

Shown in red shading: part most sensitive to noise

Clock tree: design

Buffer the clock to the 16 channels, deliver a delayed clock to the digital block. Fully symmetrical structure (also in layout)

• Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Front-end: Verilog-AMS model

Verilog-AMS model developed for the PASA and the ADC.

PASA: the model produces waveforms similar to the schematic simulations

ADC: the model was verified to produce the same results, with the same latency, as the schematic (within the resolution of the schematic model of the ADC).

Mixed-mode top level simulation

- Goal: simulation of the full acquisition chain.
- Possible using Verilog-AMS and Verilog descriptions.
- This example uses a simple digital processing (input 5 ADC counts).

Mixed-mode top level simulation

Important issue: check the synchronization between the ADC output and the DSP input. Timing corners information included in Verilog-AMS models.

Readout of one S-ALTRO channel:

29th November 2011

Outline

- Motivations for the project
- System architecture
 - Pre-amplifier shaper (PASA)
 - ADC
 - Digital Signal Processor (DSP)
 - Clock tree
 - Top-level simulations
 - Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Super-ALTRO Demonstrator Floorplan

	Pad Pad Pad Pad Pad Pad	Pad Pad Pad Pad Pad Pad Pad	Pad Pad Pad Pad Pad Pad	Pad Pad Pad	Pad	Pad Pad Pad Pad Pad Pad Pad Pad Pad Pad	
Pad Pad	PASA 200umX1100um		ADC 500umX1500um		or		Pad Pad
Pad Pad Pad		_		1	5		Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um		Cor		Pad Pad Pad
Pad Pad Pad Pad	PASA 200umX1100um				-		Pad
Pad			ADC 500umX1500um	1	Cor		Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um		COLL		Pad
Pad Pad Pad					_		Pad
Pad	PASA 200umX1100um		ADC 500umX1500um	1	Cor		Pad Pad Pad
Pad Pad	PASA 200umX1100um				<u>ـ</u>		Pad Pad Pad
Pag			ADC 500umX1500um		3		Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um	,	Cor		Pad Pad Pad
Pad	DAGA 000	D77 x n			-		Pad
Pad Pad Pad	PASA 2000mx 11000m	3000ur	ADC 500umX1500um	1	Tree	Digital Signal Processing	Pad
Pad Pad Pad	PASA 200umX1100um	outing t	ADC 500umX1500um		Clock	1670um x 8050um	Pad Pad
		wer Ro					Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um	e	ADC 500umX1500um		Cor		Pad Pad Pad
Pad	PASA 200umX1100um				-		Pad Pad Pad
Pad		_	ADC 500umX1500um		3		Pad Pad Pad Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um		Corr		Pad Pad Pad
Pad Pad Pad		_			-		Pad
Pad Pad	PASA 200umX1100um	_	ADC 500umX1500um		Cor		Pad
Pad Pad	PASA 200umX1100um		ADC 500umX1500um		orr		Pad
-740						Ē	Pad
Pad Pad Pad	PASA 200umX1100um		ADC 500umX1500um		Cor		Pad Pad Pad
Pad Pad Pad	DAGA 000 11100				5		Pad
Pad	PASA 200umX1100um		ADC 500umX1500um	1	ŝ		Pad
	Pad Pad Pad Pad	Pad Pad Pad Pad Pad	Pad Pad Pad Pad Pad Pad Pad	Pad Pad Pad Pad	Pad	Pad Pad Pad Pad Pad Pad Pad Pad Pad Pad	

16-channels:

PASA 210um X 1100um ADC 500um X 1500um Digital Signal Processing 1670um X 8050um

Front-end: layout

Large width of the ADC analog power routing allows an IR voltage supply drop lower than 10mV. Space used for decoupling and routing of reference voltages.

Power supply decoupling capacitors:

600pF /channel PASA

600pF /channel ADC analog

40pF /channel ADC reference voltages

80pF/channel ADC digital

Most of the area is for the memories, provided by the foundry as an IP block: oversized with respect to the effective memory capacitance.

The logic circuitry fills a fraction of the space between the memories.

Average power (considered in rail analysis): 118.62 mW. Worst IR drop peak: 7.2 mV.

Pads distribution for minimum influence on the front-end.

Power domains

Power domains: PASA analog ADC analog ADC digital Digital core Digital Pads

Substrate partitioning with BFMOAT

BFMOAT: high resistivity (p⁻) substrate region, placed between different power domains to insulate them from each other.

The effective substrate resistance between adjacent regions depends on the width and perimeter of the BFMOAT layer.

NW/P+ guardrings on both sides of the BFMOAT implants

M. De Gaspari

Final layout

Ľ			Separate Crawnan B a 1218
9 -1			- 222 <u>- 22</u> 2 <u>-</u>
	STATUTER STATES		
	A MARANA MANANA MAN Manana manana		
		1996 Militarda Landa Landa Land J.	
	A STATUS CONSTRUCTIONS AND A STATUS AND A STAT		
-			H 222 - 22
	ANALY CANADARY AND		
	ALTERNATION FRANKLAND ALTERNATION (************************************		
-			
		# Networkshipping	
-			
	илинининин настана Илинининин настана		
	KURUKUKUK KURUKUKU <mark>MUNTRIN K</mark> Kurukusuk kurukusu		

Size: 5750um x 8560um (49.22mm²)

Submitted July 2010

Packaged in 2 different packages: PGA180 for testing purposes QFP208 for applications + naked dies available

Outline

Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

On-chip test/debug features

into the processing chain for test purposes.

Requirements for testing

The Test Board must be able to test each block of the Super-ALTRO independently, using the test/debug features.

Shutdown / power pulsing tests controlled using the Board Controller FPGA:

- 1) LDO shutdown (voltage regulators):
 - PASA
 - ADC analog
 - ADC digital, decrease the supply voltage
- 2) Smart shutdown (dedicated control lines):
 - PASA shutdown feature
 - ADC bias resistor switch
 - Removal of the sampling and/or readout clock (enable lines)

Test Board

Top side: Voltage Regulators, Clock Distribution, Level Shifters, external ADCs, Connectors

Bottom side: S-Altro sockets (PGA and CQFP), Board Controller FPGA, Transceivers

Test GUI

Bytes 65100

Receive Cancel

•

_ 🗆 🗙

🎽 SAgui.py					🔀 SAgui.py
Connection Reset FEC On/Off Receive Data Te	sting				Settings
Component	Value	Address	Access	Тур∈≜	First such as (0 for each user)
DDL (pcphaid002), R: 4 S: 5044 C:0				DDL	
RCU configuration registers				RCU	Dump Hie
IF-RCU TTC registers				RCU	Choose
RCU memories				RCU	
⊕– RCU commands				RCU	
E-FECs				FEC:	M Disbiah
E FEC 0		0×0		FEC	Chabur
- ALTROS		0.00		ALTR	
ALTRO 0		0x0		ALTR	Events 3 Gigabytes 0 Bytes
ALTRO global registers				ALTR	
BCZTHR	0x0	0x9	rw	ALTR	RORC reset
DPCEG	0x0	Oxb	rw	ALTR	Silireset
DPCF 2	0x0	Oxc	rw	ALTR	DIU reset
- PMADD	0x0	0xd	rw	ALTR	RORC reset
BC1THR	0x0	0xe	rw	ALTR	SIU status cleared. Status word: 0x000020c2
ERSTR	0x80924	0x10	r	ALTR	DIU status cleared. Status word: 0x804120c1
CHREC	0x6	0x12	r		RX address FIFO emptied
AITRO global commands	0.70	0,117	<u>, i</u>	ALTR	SILI status cleared Status word: 0x000020c2
E Channels				Char	DIU status cleared. Status word: 0x000120c1
⊜- Channel 0		0x0		Char	FEE accepted the RDYDX command. Its reply: 0x00000004
⊟- ALTRO channel registe	rs			Char	
	0x0	0x0	rw	ALIR	
K2	0x0	0x2	rw.	ALTR	
K4	0x0	0x3	rw	ALTR	Press
	0x0	0x4	rw	ALTR	🔗 fee@tpcfee03:~
- L2	0×0	0x5	rw	ALTR	executing: w 0x0 0x330000
L3	0x0	0x6	rw	ALTR	executing: w 0x1 0x380000
- L4 75THR	0x0	0x7	rw	ALTR	executing: c 0x5304
ADEVL	AN AN	0.00			dcs0071:/mnt/dcbrw/Skitro \$ rcu-sh b Config.rcush
···· VFPED	A SAgui.py			×	executing: w 0x5100 0x1
- PMDTA					executing: w 0x5101 0x5000
CTE	Hardware Ad	idress (0x0			executing: w 0x5102 0x7fff
Pedestal Memory	300 -	1	1		executing: w Ox1 Ox220015
E Channel 2	1				executing: w Dx2 Dx20000a
🕀 Channel 3	250 -				executing: w 0x3 0x2003f0
🕀 Channel 4	E				executing: w 0x4 0x20000b
⊕ Channel 5	\$ 200 E				executing: w 0x5 0x200000
E Channel 6	5,150				executing: w 0x6 0x380000
E Channel 8	5 150 -				executing: c 0x5304
E Channel 9	U 100 =				dcs0071:/mnt/dcbrw/SAltro \$ rcu-sh b TriggerIMEM.rcu
😐 Channel 10	8 100 1				executing: w UxU Ux330000
🕀 Channel 11	A 50 -				executing: w DX1 DX300000
Channel 12	T E	·			dee0071:/mpt/debry/Siltro & reu-sh h Trigg
the Channel 13	οĘ				executing: w 0x0 0x330000
					executing: w 0x1 0x380000
	-50 -50				executing: c 0x5304
	_			1,000,1,000	dcs0071:/mnt/dcbrv/S<ro \$ rcu-sh b Trigg
Active FECs	0	200 400	imebinc	1,000 1,200	executing: w 0x0 0x330000
0 Г 2 Г 4 Г 6 Г 8 Г 10 Г 12 Г 1	4		mebilis		executing: w 0x1 0x380000
	5				executing: c 0x5304 dcs0071:/mnt/dcbrw/Skitro \$
		1			
Start 💛 Quartus II 32-bit Pro 🎭 rds	eda08 - Remote D	💕 tpc@pcpha	id002:~/S	Fee@tpcfee03:	Z SAgui, py

M. De Gaspari

Graphical User Interface: control of configuration registers, signal acquisitions

Example acquisitions

Examples of acquisitions with PASA gain=12mV/fC, shaping time = 120ns, input cap 1.8pF, sampling clock frequency = 20MHz

Outline

Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Sampling clock 10-20-40MHz, readout clock 40MHz.

- Chip PGA3: the inputs of the PASA are not bonded. This avoids noise injection from the ground plane of the test board.
- Chip PGA4: all inputs bonded.

Acquired pulses

Examples of acquisitions at 30ns and 120ns shaping time. Signal scan with a granularity of 5ns.

29th November 2011

Gain measurement 1

Measured gain 10.6mV/fC 1.9%

29th November 2011

Gain measurement 2

PASA configuration: 27mV/fC, 30ns, Low polarity Measured gain 22.5mV/fC 0.9%

29th November 2011

Noise: PGA3

PGA3: inputs not bonded

Noise constant across channels

M. De Gaspari

Noise summary

	Config	120ns L 12	120ns L 27	30ns L 12	30ns L 27	120ns H 12	30ns H 12
	Noise LSB	0.480	0.655	0.526	0.683	0.498	0.504
PGA3	Noise fC	0.088	0.051	0.103	0.059	0.092	0.100
	Noise e-	547	316	641 (370) 574	625
	Noise LSB	0.709	1.346	1.475	3.263	0.668	1.279
PGA4	Noise fC	0.129	0.104	0.287	0.283	0.123	0.254
	Noise e-	809	649	1796	1768	770	1587

Measured noise averaged over 16 channels

Noise: PGA4

Measured noise for different input capacitances.

PGA4, Channel 0, 120ns, 12mV/fC

Slope: 15e⁻/pF

29th November 2011

Noise

Influence of the amount of switching logic on the noise: basic data acquisition and data acquisition with BC1 memory (Look-Up Table) switching.

Noise: effects of the clock phase

Noise with different phase shifts between ADCs and DSP: no significative difference.

The red arrow marks the region where a noise increase can be expected.

Noise: effects of memories

First 20 samples: lower noise (MEBs are not saving data).

Shaping time: 30ns

Periodicity: 4th clock cycle.

M. De Gaspari

DSP tests 1

Known pattern written in the Pedestal Memory (Baseline Correction 1) and used as test input

Undershoots Emulates the pattern produced by a real detector

DSP tests 2

The DSP removes offsets, undershoots, baseline drifts

Power consumption

	40MHz operation	Smart shutdown		
PASA	10.26mW/ch	235uW/ch		
ADC analog	31.28mW/ch	394uW/ch		
ADC digital	1.71mW/ch	≈0		
DSP	4.04mW/ch	10.8uW/ch		

Smart shutdown: shutdown control lines for PASA and ADC, clock removal for the DSP.

Total power consumption: 757mW.

Power consumption: DSP

Power consumption of the DSP when acquiring at 40MHz sampling frequency. Different DSP functionalities included.

M. De Gaspari

Power consumption: DSP

Power consumption of the DSP for different sampling clock frequencies (10-20-40MHz).

M. De Gaspari

Power consumption: DSP

Power consumption of the DSP at different supply voltages. Efficient operation down to 1V supply.

M. De Gaspari

Power pulsing cycle

Power consumption of the DSP during a power pulsing cycle (smart shutdown).

Minimum delay between power up and L1 trigger has to be determined.

Power pulsing cycle

A test pulse is injected after power up; the amplitude of the pulse is monitored with different delays between power up and L1. 100usec delay gives good results: difference with continuous mode <1LSB

Power pulsing: results

	Power (mW)
PASA	2.68
ADC analog	24.96
ADC digital	0.01
DSP	0.40
Total	28.1

Power pulsing cycles are repeated at a frequency of 5Hz. Power reduction by a factor 27! (continuous mode: 757mW)

Outline

• Motivations for the project

System architecture

- Pre-amplifier shaper (PASA)
- ADC
- Digital Signal Processor (DSP)
- Clock tree
- Top-level simulations
- Assembly, floorplan, layout
- Tests
 - Test setup
 - Measurements: gain, noise, power, power pulsing
- Conclusions

Conclusions:

• The 16 channel Super-ALTRO Demonstrator has been designed, prototyped and tested successfully.

• The chip is already usable for the Linear Collider TPC prototype. The area is 3.07mm²/channel (LCTCP requirement: <4mm²)

• Using appropriate design techniques, integration of low-noise analog components and digital functions is possible with little effect on noise performance.

• Power pulsing approach has been demonstrated effective in reducing the power consumption, while preserving the performance.
Outlook of the project

- The Super-ALTRO Demonstrator opens possibilities of design optimization for lower power and higher number of channels.
- The system can be used for detector tests, e.g. using GEM readout.
- Since integration has been proved, the next steps should attack the power consumption of the ADC.

Acknowledgements

Thanks:

Francis Anghinolfi, Sandro Bonacini, Jorgen Christiansen, Antoine Junique, Lucie Linssen, Magnus Mager, Alessandro Marchioro, Christian Patauner, Attiq Ur Rehman, Adam Szczepankiewicz, Gerd Trampitsch, Felix Reidt

And thank you all for your attention!

Back-up slides

M. De Gaspari

PASA: ESD protections

Each PASA has two input pads in parallel (only one bonded):

- Simple double diode protection scheme (Human Body Model)
- Structure with series resistor for enhanced protection (Charged Device Model)

Drawback: the series resistor adds noise to the input signal. PASA noise: 300e⁻ @ 10pF detector capacitance Noise increase (simulated): 20-30%

PASA: Equivalent Noise Charge

Simulations: dependency of the noise on detector capacitance, shaping time, feedback resistance, and type of ESD protection

PASA: Shutdown switch

Beta-multiplier gives better PSRR than conventional resistor with diodeconnected transistor.

The shutdown line controls the main betamultiplier. Therefore, it can remove the biasing to the whole PASA.

Pipeline ADC: MDAC

Simplified (single-ended) MDAC. Grounds are intended as AC grounds.

Switched capacitor network: multiply by 2 with equal capacitors.

Non-overlapping clocks for the switches.

M. De Gaspari

Pipeline ADC: Main Amplifier

Two-stages telescopic cascode differential amplifier with common-mode feedback amplifier (not shown) and gain boosting Cc=1.8pF, Gain 100dB,

GBW 330MHz, PM 70, 4mW

Input diff pair

Gain boosting amplifiers

Current sources

Output transistors with compensation caps

Pipeline ADC: test results

ENOB as a function of input signal frequency, sampling at 40MHz,

2 ADCs under test

Bias circuitry: beta-multiplier

The off-chip resistor is meant to adjust externally the power consumption of the ADC (useful for different sampling frequencies and to test power-pulsing)

ADC prototype: 1 beta-multiplier per ADC + 1 off-chip resistor per ADC

SAltro: 1 beta-multiplier + 1 off-chip resistor + the BiasReference signal is routed to all channels

Digital error correction (redundancy)

Digital error correction: verification

In order to run chip-level simulations, an analytical Verilog-AMS model has been written and verified for each block.

Arbitrary analog input waveform converted to digital simulated in Spectre (schematic, extracted parasitics, extreme corners and Monte Carlo) and in Verilog-AMS: results correct

Verilog-AMS example: PASA

`include "constants.vams" parameter Rpz=Rs/14; `include "disciplines.vams" parameter Cpz=Cf*14; module Pasa1ch (Gnd, SupplyP, VOutP, VOutN, BiasDecay, parameter R1=1200; // series resistance of the pole-zero // cancellation network gain1, gain2, in, polarity, PreampEn, sh1, sh2, sh3, shutdown, substrate); parameter G=15; // DC gain of the T-bridged amplifiers inout substrate: parameter pi=3.14; inout sh3: parameter pa=2*pi*10E6; // one pole of the shapers (radians) inout gain2; parameter pb=2*pi*30E6; // one pole of the shapers (radians) inout Gnd: parameter BaselineP=1.170; // DC level of the positive output inout in; parameter BaselineN=0.330; // DC level of the negative output inout BiasDecay; analog begin inout shutdown: $I(cap) <+ Cf^*ddt(V(cap));$ inout sh2: V(res) <+ Rs*I(res); inout SupplyP: V(PreampOut) <+ -10E3*(V(in)-Dcl); inout VOutN: V(PZOut) <+ R1*(((V(PreampOut)-V(PZOut))/Rpz) + inout VOutP: Cpz*ddt(V(PreampOut)-V(PZOut))); V(OutInt1) <+ V(PZOut)-(1/pa)*ddt(V(OutInt1)); inout sh1: inout PreampEn; V(OutInt2) <+ V(OutInt1)-(1/pb)*ddt(V(OutInt2)); V(OutSe) <+ G*V(OutInt2); inout polarity; inout gain1; if (V(polarity)>0.75) begin V(VOutP) <+ BaselineN+V(OutSe); electrical in, VOutP, VOutN; electrical Gnd, SupplyP, BiasDecay, gain1, gain2, polarity, V(VOutN) <+ BaselineP-V(OutSe); PreampEn, end else begin V(VOutP) <+ BaselineP+V(OutSe); sh1, sh2, sh3, shutdown, substrate; V(VOutN) <+ BaselineN-V(OutSe); electrical PreampOut, PZOut, OutInt1, OutInt2, OutSe; branch (in, PreampOut) cap, res; end parameter Cf=0.8E-12; // integrating capacitor end parameter Rs=1E6; // feedback resistance endmodule parameter real Dcl=0.2; // DC input level of the preamplifier

Verilog-AMS is an extension of Verilog

Threshold system

Threshold system: thr_hi, thr_lo, noise per channel.

On-chip test/debug features

- Scan mode: all registers in the chip are connected in a JTAG-like fashion; a pattern is provided to the dedicated input. Analysis of the output pattern provides information on critical timings.

-Auxiliary inputs to the DSP: a 10bit auxiliary input is routed to some multiplexers and can replace the inputs to the DSP from the ADC, in case the analog part gives problems.

-Test mode TSM: continuous read-out, without Data Format / MEB. Useful for testing detectors in continuous mode.

Acquired pulses + noise

Transient noise during acquisition of pulses.

```
29<sup>th</sup> November 2011
```

Gain plot

12mV/fC, 120ns, Low polarity

gain: 10.7mV/fC 4.1%

29th November 2011

Crosstalk between adjacent channels <0.7%.

Channel-to-channel maximum baseline difference of about 30LSB (60mV).

Noise 1

The influence of the ADC resolution on noise

Noise: PGA4

PGA4 inputs bonded

Noise variation with the channel number

M. De Gaspari

Zero Suppression example

29th November 2011