Implementation of the process $gg(q\bar{q}) \rightarrow \bar{t}bH^+$ in PYTHIA

Johan Alwall (Uppsala)

Nordic LHC Workshop in Lund, November 28, 2003

Masses in the Standard Model

Before spontaneous symmetry breaking:

Bosons:
$$\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$$
 W_{μ} W_{μ}^{\dagger} $W_{3\mu}$ B_{μ}
Fermions: $\begin{pmatrix} \nu_{eL} \\ e_L \end{pmatrix}$ $\begin{pmatrix} u_L \\ d_L \end{pmatrix}$ e_R u_R d_R

After spontaneous symmetry breaking:

Bosons:
$$h \quad W^+_{\mu} \quad W^-_{\mu} \quad Z^0_{\mu} \quad A_{\mu}$$

Fermions: $e \quad \nu_L \quad u \quad d$

The Higgs mechanism

- One of the Higgs components gets a vacuum expectation value (vev) v
- Three of the four scalar degrees of freedom are absorbed by the three massive vector fields
- The down-type fields get mass through coupling to the Higgs doublet Φ , the up-type fields through coupling to $\widetilde{\Phi} = -i \left[\Phi^{\dagger} \tau_2 \right]^{\mathsf{T}}$.

Supersymmetric extensions

In a supersymmetric Lagrangean, one cannot make the transformation $\tilde{\Phi} = -i \left[\Phi^{\dagger} \tau_2 \right]^{\mathsf{T}}$ of the Higgs doublet

\Downarrow

Must have (at least) two Higgs doublets to give mass to both up-type and down-type fields

This is an example of a type II Two Higgs Doublet Model (2HDM)

J. Alwall – Implementation of $gg(q\bar{q})
ightarrow tbH^+$ in PYTHIA

Two Higgs Doublet Models

• 8 scalar degrees of freedom \implies 5 Higgs particles:

 h, H^0, H^+, H^-, A (pseudoscalar)

• Two parameters in MSSM (7 in general 2HDM):

 $\frac{\tan(\beta) = \frac{v_1}{v_2}}{M_A}$ Ratio of vev's for the doublets MA One of the masses, usually the pseudoscalar

• Finding a charged Higgs would be a clear signal of physics beyond the Standard Model!

J. Alwall – Implementation of $gg(q\bar{q})
ightarrow tbH^+$ in PYTHIA

Production of single charged Higgs

Three main production channels in $pp (p\bar{p})$ collisions:

Importance of the H^+ production processes

- $gg(q\bar{q}) \rightarrow t\bar{t} \rightarrow bH^+\bar{t}$ is an approximation of $gg(q\bar{q}) \rightarrow \bar{t}bH^+$ which works well for small Higgs masses $m_{H^+} < m_t$, when the main contribution comes from t close to the mass shell
- For large Higgs masses, $g\bar{b} \to \bar{t}H^+$ gives larger cross-section than $gg(q\bar{q}) \to \bar{t}bH^+$ and similar p_{\perp} -distributions for the t and H^+
- If one wants to tag the extra b quark for $m_{H^+} > m_t, \; gg(q\bar{q}) \to \bar{t}bH^+$ is necessary
- For H^+ masses close to the t mass, $gg(q\bar{q}) \rightarrow \bar{t}bH^+$ is necessary

J. Alwall – Implementation of $gg(q\bar{q})
ightarrow tbH^+$ in PYTHIA

Importance of the H^+ production processes (contd.)

J. Alwall – Implementation of $gg(q \bar{q})
ightarrow tbH^+$ in PYTHIA

Summing the $2 \rightarrow 2$ and $2 \rightarrow 3$ processes

The $g\bar{b} \to \bar{t}H^+$ (2 \to 2) and $gg \to \bar{t}bH^+$ (2 \to 3) processes overlap when the b of the 2 \to 3 process is collinear with the beam

\implies Must subtract double counting term.

Borzumati et al., Phys.Rev. D60,115011, Belyaev et al., hep-ph/0203031

J. Alwall – Implementation of $gg(q\bar{q}) \rightarrow tbH^+$ in PYTHIA

Summing the $2 \rightarrow 2$ and $2 \rightarrow 3$ processes (cont)

J. Alwall – Implementation of $gg(q\bar{q}) \rightarrow tbH^+$ in PYTHIA

$2 \rightarrow 3$ processes in PYTHIA

Phase space for a $2 \rightarrow 3$ process:

$$d(PS) = \left(\prod_{i=3}^{5} \frac{1}{(2\pi)^3} \frac{d^3 p_i}{2E_i}\right) (2\pi)^4 \delta^{(4)}(p_3 + p_4 + p_5 - p_1 - p_2)$$

In PYTHIA:

$$d(PS) = \frac{1}{(2\pi)^5} \frac{\pi^2}{4\sqrt{\lambda_{\perp 34}}} dp_{\perp 3}^2 \frac{d\varphi_3}{2\pi} dp_{\perp 4}^2 \frac{d\varphi_4}{2\pi} dy_5 \ ,$$

where $\lambda_{\perp 34} = (m_{\perp 34}^2 - m_{\perp 3}^2 - m_{\perp 4}^2)^2 - 4m_{\perp 3}^2 m_{\perp 4}^2$

+ variables $\tau = \frac{m_{H^+}^2}{s}$, $\tau' = x_1 x_2$, $y^* = \frac{1}{2} \ln \frac{x_1}{x_2}$

 \implies Events chosen from distribution in 8 variables

J. Alwall – Implementation of $gg(q\bar{q})
ightarrow tbH^+$ in PYTHIA

Implementation of $gg(q\bar{q}) \rightarrow \bar{t}bH^+$

I have basically followed the implementation of $gg(q\bar{q}) \rightarrow \bar{t}tH^0$,

Difference: 3 final-state particles with different masses (first process in PYTHIA)

All features of existing processes, such as width of H^+ mass.

J. Alwall – Implementation of $gg(q\bar{q}) \rightarrow tbH^+$ in PYTHIA

Activities so far

- Checks against Herwig and publications
- Efficiency tests: 10000 events with full fragmentation etc.~ 16 min on standard PC, $m_{H^+} = 250$ (670 tries/event)
- Test of differences between $gg(q\bar{q}) \rightarrow t\bar{t} \rightarrow bH^+\bar{t}$ and $gg(q\bar{q}) \rightarrow t\bar{t} + t$ together with Johan Rathsman and Andre Sopczak
- Properly matching the $2 \rightarrow 2$ and $2 \rightarrow 3$ processes (work in progress)

J. Alwall – Implementation of $gg(q\bar{q})
ightarrow tbH^+$ in PYTHIA

Results

Results on difference between $gg(q\bar{q}) \rightarrow t\bar{t} \rightarrow bH^+\bar{t}$ and $gg(q\bar{q}) \rightarrow t\bar{t} bH^+$ at the Tevatron, $m_{H^+} = 165$ GeV.

J. Alwall – Implementation of $gg(q\bar{q}) \rightarrow tbH^+$ in PYTHIA