Data treatment in the muon lab

Martin Ljunggren
May 7, 2012

1 Data treatment

One thing to notice about the data is that the first channels are empty (0
counts). This is due to a limitation in the electronics so that only values above
a certain time can be measured. Naturally, we don’t want to take these chan-
nels into account since we know that they do not contain any data of interest.
Therefore, we simply remove these channels. It is important for the calibration
however, that the numbering stays the same. For example, if the number of
removed channels is 3 and the original numbering started with channel 1, we
must now start counting from channel 4 in order to be able to calibrate with
the values we have.

Due to effects of the finite binning, it is also likely that the information in
the first channel containing data is misrepresentative. Since we do not know
exactly where the low limit of times that we can measure lies, we are likely
better off if we discard also this channel. For example, if the considered channel
contains counts between times ¢ and t + At and the shortest time that we can
measure lies somewhere in between, the number of counts that we will get in
this bin is smaller than the ”true” value.

2 Chi-square test

When fitting a function to observed data, the least squares technique is a com-
mon approach. Given the expression

S = Z (f(%()f; yi) (1)

the best fit is considered to be the one that minimizes S. For anything else than
a linear function f, the parameters that minimize f are found numerically. The
distance between the fitted function and the data points, f(x;) — y;, is called a
residual. Since the data points might be of varying quality it is also reasonable
to assign a weight to them. Using the inverse the error as weight should give a
more reliable fit. In our case it is common to use the square root of the number
of measurements for the data point so it would be ¢ = \ﬂn) where n is the
number of counts in a certain channel. If the number of counts in the bin is
zero, simply set the error to 1.

If our measurement was perfect, the function would fit perfectly with the
data and all residuals and therefore also S, would be zero. Due to experimental
errors this will not be the case.

An estimation of the “goodness of fit” can be obtained by using a chi-square
test. The chi-square statistic is given by

XZZZM (2)

g

The so called reduced chi-square Nx—jd where N is the number of data points
and d is the number of degrees of freedom (the number of parameters, 3 in this
case) in the fit, gives an estimation of the fit quality. Simplified, a good rule of
thumb is that if this value is much larger than one, the fit function is probably
wrong or the estimated errors are too small. If it is much less than one, the fit
is “too good” which for example could mean that the errors are overestimated.
Note that this is only an estimate of the fit quality, if it is probable that the
measured data follows the assumed distribution. It is not en estimate of the

error in the measured parameters (e.g. the muon lifetime).

3 Useful Matlab commands

e For-loops are written as

for i = 1:10
X = x+1;
end

where in this example the statement between for and end will be executed
10 times.

e For fitting a polynomial of a certain degree, poly fit is a good choice. Given
the desired degree and input in the form of two vectors it returns the fit
parameters.

p = polyfit(x,y,1)

returns the parameters of a first degree polynomial fitted to the points
contained in x and y, where p(1) is the slope and p(2) the intersect

e To operate on vectors element by element use a dot (.) in front of the
normal operator. For example, the code

x=1[1234]
y=1[4567
m = x.¥y

produces a vector m = [4 10 18 28]. Without the dot, a normal matrix
multiplication will be performed. This is of course not possible in this
case.

e To define a function, write

func = @Q(param) func(param)

Example:

function = @Q(param) param(1) + param(2)
function([3 6])

This will produce the output 9, i.e. the sum of 3 and 6, when initialized
with the parameters 3 and 6.

We can also write
x=[1234]

func = @Q(param) param(1)*x + param(2)
m = func([2 1])

producing the vector m = [3 5 7 9] given the input parameters 2 and 1.

To find the parameters that minimize a function, fminsearch can be used.

minparam = fminsearch(f, ipar)

will minimize the function f with using the initial parameters in ipar and
put the resulting parameters in minparam.
Simple example: Fit function a - 22 + b to data using fminsearch:

x=[11522533544555566.57] % define two vectors x and y
y = [3.14.35 6.16 8.3 11.2 14.19 18.5 22.15 26.3 32 36.9 44.1 50.§]

func = @Q(par) sum ((par(1)*x."2 + par(2) - y(1,:)).”2) % define function func =
S(a-z2+b—y;)?

minpar = fminsearch(func, [1 1]) % minimize func with respect to a
f = minpar(1) * x.”2 + minpar(2) %fit parameters are returned in vector minpar
hold on

plot (x,f) % plot the result
plot(x,y,’*’)

