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Abstract

Description of the course Numerical methods for Physicists (NUM)
7.5 ECTS credits, including five PBL cycles with associated exercises.
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1 Introduction

This course is intended to give the basics of some important method
used for numerical computations in physics. The course should provide
the theoretical and mathematical basis for these methods as well as
some practical experience. The course will also give some experience
in using programming languages, mainly C and C++.

The course is based on a master-level lecture course (FYS232)
given at the Department of theoretical physics in Lund, and also uses
some of the exercises developed for that course.

2 Course Overview

2.1 The cycles

The course consists of 5 one week PBL cycles as follows:

• Numeric Integration

• Monte Carlo

• Optimization and minimization

• Ordinary differential equations

• Partial differential equations

The goals for these are detailed below. In addition there are some
overall goals, including the understanding of different kinds of errors
which are introduced in numerical calculations, and how to minimize
these. Another goal is to understand the basic theory of random
numbers, and to gain experience in programming from working with
programs written in C and C++.

2.2 Numerical Integration

This part introduces the standard numerical integration algorithms
such as the trapezoidal rule, the Simpsons rule and the Gaussian

quadrature and how these can be derived through interpolation and
extrapolation techniques.

2.3 Monte Carlo

Introduction to the Monte Carlo technique for numerical estimates of
integrals. This includes some basic properties of random variables, the
transformation of distributions of random variables, and the Metropo-
lis algorithm.
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2.4 Optimization and minimization

Different techniques for optimization and minimization, such as the
Simplex and Conjugate gradient descent algorithms. Also discusses
the usage of Monte Carlo techniques, such as Simulated annealing.
The emphasis is on χ2 minimization, which is what the students
mostly will encounter in HEP.

2.5 Ordinary differential equations

Studies different methods for solving ordinary differential equations
and their relative benefits in terms of precision, computational cost
and the stability of the solutions. Both explicit methods, such as
Rung-Kutta, and implicit methods are discussed.

2.6 Partial differential equations

Studies the most common types of partial differential equations, such
as the Poisson, diffusion and wave equations. Different methods are
discussed and compared in terms of precision, computational cost and
the stability of the solutions.

3 Literature and Examination

Most of the course content is covered in

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University Press
(1988).

which is available on-line at http://www.nrbook.com Also other text-
books in the subjects can be used as complementary literature, eg.

C-E. Fröberg, Numerical Mathematics, Addison-Wesley (1985).

Some parts are covered in the lecture notes to the FYS232 course,
available on-line at http://www.thep.lu.se/∼leif/fys232/notes.pdf

The examination is a standard written exam for the course (see
Appendix).
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Appendices: PBL cycles and examina-

tion.
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Numerical methods for Physicists (NUM)

Cycle 1
Numeric Integration
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The nasty integral

— So, did you talk to professor Rechner about evaluating that nasty
integral?

— Well, no not really. He was in a hurry and just gave me some
crap about how easy numerical integration is “Just replace dx with
∆x and

∫

with
∑

”. And when I asked him about controlling the
precision he just said “Think Taylor expansion!” and ran away to
catch his bus.

— But didn’t you already try to just discretize and sum?
— Yes, but the the result printed out from my program was “NaN”

so something must have gone wrong somewhere.
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Literature

Most of the course content is covered in

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University Press
(1988).

and for this cycle the most relevant chapters are 3 and 4.

Goals

• Introduction to the local computers

• Lagrange-interpolation

• Richardson extrapolation

• Trapezoidal rule

• Simpsons rule

• Gaussian quadrature

Comments to exercises

Besides familiarizing the students with the computer system, the exer-
cise is to evaluate the integrals of three functions, which are unknown
to the student and are only supplied as compiled object files. The
functions and the corresponding integrals are

1.
∫ 2π

0

sinx

x
dx

2.
∫ 1

0

1 + x2

√
x

dx

3.
∫

x2+y2<1
e−(x2+y2)dxdy
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Exercise 1

Go through the computer introduction for the course available at
http://www.thep.lu.se/∼carl/fys232

Then, in http://www.thep.lu.se/∼leif/fys232/functions.h you will
find the function declarations of three functions as follows:

#ifdef __cplusplus

extern "C" {

#endif

/**

* Integrate this function from 0 to 2*pi. It is a well-behaved,

* smooth function in the whole interval x>0. For x -> 0, the

* function goes to a finite constant value.

*/

double function1(double x);

/**

* Integrate this function from 0 to 1. The function has an

* integrable singularity in x=0 where it diverges as 1/sqrt(x), but

* is otherwise well-behaved and smooth. In fact it can be written

* as a 2nd degree polynomial divided by sqrt(x).

*/

double function2(double x);

/**

* Integrate this function inside the unit circle x^2+y^2<1. The

* function is everywhere smooth and well-behaved.

*/

double function3(double x, double y);

#ifdef __cplusplus

}

#endif

The assignment is to evaluate the integrals of these functions
as described in the comment lines. You do not have access to the
actual code of these functions, but if you link your program with
the object file available in
http://www.thep.lu.se/~leif/fys232/functions.o

you can call the functions from your main program. Try different
methods of integration for each function.

Write a report where you describe and discuss the different
methods you have chosen for each function and discuss the pre-
cision of your results.
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Numerical methods for Physicists (NUM)

Cycle 2
Monte Carlo
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Metropolis

Why is it called the “Metropolis” algorithm? I mean, I can un-
derstand the name “Monte Carlo” for using random sampling to
numerically evaluate an integral — it really feels like a game of
chance like in a casino. But Metropolis? Maybe it has something
to do with randomly walking around in the streets of a large city?

In any case, these random methods all seem a bit . . . well,
random. How can you make sure that you don’t accidentally
miss a narrow peak in the function you are integrating? It seems
to me that even the best possible random number generator you
can never really be sure.
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Literature

Most of the course content is covered in

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University
Press (1988).

and for this cycle the relevant chapter is 7. The Metropolis algo-
rithm is described in the lecture notes and in the exercise.

Goals

• Random numbers

• Central-limit theorem

• Transformation of random numbers

• Monte-Carlo integration

• The Metropolis algorithm

• Simulated annealing

Comments to exercises

The exercise deals with a simple model for protein folding.
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Exercise 2

Go through the computer assignment at
http://www.thep.lu.se/∼carl/fys232 h1/ and write a report on
the results.

To compile the pivot.c program you need to have the GNU

Scientific Library package installed on your laptop. As a super
user, simply do rug install gsl (takes a couple of minutes).

The program is written in C. After you have handed in your
reports we will discuss how this program would look if it was
written in C++
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Numerical methods for Physicists (NUM)

Cycle 3
Optimization and minimization
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Will it fit?

They had several thousand pp → τ+τ− + X events, and looking
at the invariant mass spectrum dσ/dmττ they could see a small
peak over the continuum at around mττ = 130 GeV. So they
fitted a Breit-Wigner plus a power-suppressed background and
found that the resonance was consistent with mττ ≈ 130 GeV
and Γττ ≈ 2 GeV, but the errors were large, and the significance
of the peak was only 1.7 sigma. But it could be the Higgs!
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Literature

Most of the course content is covered in

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University
Press (1988).

and for this cycle the relevant chapter 10.

Goals

• Minimization and Optimization

• The downhill simplex method

• Conjugate gradient descent

• C++ programming

Comments to exercises

Students with little or no experience of C++ may need extra
tutoring in programming to complete the exercise.
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Exercise 3

At http://www.thep.lu.se/∼leif/fys232/PBL/ you will find the
file tautau.dat which contains simulated LHC data of the dis-
tribution in τ+τ− invariant mass in the range 100 GeV< mττ <
200 GeV. If you plot the data with gnuplot you will find a small
peak around mττ ≈ 135 GeV.

Write a C++ program to fit this data to a Breit-Wigner peak
and a power-suppressed background using eg. Simplex minimiza-
tion. Extract values for the mass and the width of the peak.
Discuss the errors on the extracted values and the significance of
the peak.

In http://www.thep.lu.se/∼leif/fys232/PBL/ you will also find
the files FitData.h, FitData.cc, FitFunction.h, FitFunction.cc
and fitter.cc, containing a skeleton for the fitting program
which you may use. If you implement the calculation of the χ2

in FitData.cc you can compile the program as follows:

g++ -o fitting -g -O fitting.cc FitFunction.cc FitData.cc

The resulting program is called fitting and running it will write
out the χ2 for a chosen set of parameters using just the power-
suppressed background.
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Numerical methods for Physicists (NUM)

Cycle 4
Ordinary differential equations
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Ordinary Differential Equations

— So I think I got the hang of this now. All I need to do to
numerically solve this differential equation is to discretize and see
where I end up. Then, to understand what kind of errors I get,
I just make a Taylor expansion. And looking at the expansion,
maybe I can deduce some trick to improve the precision. Now
what did that equation look like. . . ?
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Literature

Most of the course content is covered in

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University
Press (1988).

and for this cycle the relevant chapter is 16.

Goals

• Implicit and explicit Euler methods

• Runge-Kutta

• The modified mid-point method

• Richardson extrapolation

• Stability of solutions

• Stiffness in differential equations

Comments to exercises

The exercise goes through the solutions of a simple differential
equation using different methods.
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Exercise 4

Go through the computer assignment at
http://cbbp.thep.lu.se/∼simon/teaching/RK.html and write a re-
port on the results.

20

http://cbbp.thep.lu.se/~simon/teaching/RK.html


Numerical methods for Physicists (NUM)

Cycle 5
Partial differential equations
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Partial Differential Equations

Just as for ordinary differential equations, you need to worry
about the stability of your numerical solutions to partial differ-
ential equations. A typical example here is the von Neumann
stability analysis for the diffusion equation.

But there are also other complications when discretizing par-
tial differential equations. There may be qualitative properties of
the continuous solutions which you may want to preserve when
doing things numerically. The conservation of probability in the
Schrödinger equation is one example.
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Literature

Most of the course content is covered in

W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flan-
nery, Numerical Recipes in C, Cambridge University
Press (1988).

and for this cycle the relevant chapter is 19.

Goals

• The diffusion equation

• Wave equations

• The Poisson equation

• von Neumann stability analysis

• The Crank-Nicholson method

• Relaxation methods

Comments to exercises

The exercise studies boundary-value problems for the Poisson
equation by using the method of successive over-relaxation.
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Exercise 5

Go through the computer assignment at
http://cbbp.thep.lu.se/∼simon/teaching/sor.html and write a re-
port on the results.
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Numerical methods for Physicists (NUM)

Written Exam
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Examination, Numerical Methods for

Physicists, April 26 2007

Allowed calculational aids: “TEFYMA” and pocket calculator.

The examination consists of eight problems.

1. Assume you have a function, f(x), which you know behaves
as

lim
x→0

f(x) ∝
1
√

x
,

but is otherwise well behaved and smooth. Give arguments
against using Simpsons rule to evaluate

∫ 1

0
f(x) dx.

Also argue against using Monte Carlo integration with a
uniform random number distribution.

2. For the same integral, describe how you would estimate it
using importance sampling. Also describe how you would
obtain the necessary random number distribution from a
uniform distribution between 0 and 1.

3. For the same integral, derive a suitable two-point Gaussian
Quadrature formula.

4. Give the formulae for doing a three-step Richardson extrap-
olation.

5. Suppose the explicit Euler method is applied to the initial
value problem

dy(x)

dx
= Ay(x) y(0) = y0 A =

(

−2 −1
−1 −2

)

where y(x) is a two-component vector. How small must the
step size h be for the method to be stable?

6. The Levenberg-Marquardt method for minimizing χ2(a1, . . . , aM)
is based on the update

ak → a′

k = ak + δak, with
M
∑

l=1

α̃klδal = βk

βk = −
1

2

∂χ2

∂ak

α̃kl =
1

2

∂2χ2

∂ak∂al

(1 + λδkl)
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where λ > 0 is a parameter (δkl = 1 if k = l and δkl = 0
otherwise). Give a brief motivation for this update based on
the behavior for small and large λ, respectively.

7. One wants to sample a discrete probability distribution P (t)
by using the Metropolis method. Explain briefly how sta-
tionarity of P (t) is achieved in this method.

8. Consider the heat equation ∂u/∂t = ∂2u/∂x2 with bound-
ary conditions u(0, t) = u(1, t) = 0. Discretizing in the
x-direction with a step size a = 1/J and using the approxi-
mation ∂2u/∂x2 ≈ (uj+1 − 2uj + uj−1)/a

2 leads to a matrix
equation of the form

du

dt
= Au

for u = (u1, . . . , uJ−1). Show that

v(k) =
(

sin
kπ

J
, sin

2kπ

J
, . . . , sin

(J − 1)kπ

J

)

(k = 1, . . . , J−1)

are eigenvectors of the A matrix and calculate the eigenval-
ues.

If we discretize also in t with step size h and use the explicit
Euler method, what can be said about the stability of the
solution.
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