
Introduction to Phenomenology and Experiment

of Particle Physics (PEPP)

Cycle 1
Matrix element description of hard processes
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Automatic matrix element generation

One would think that simulating a given process at a particle collider should
be quite straight forward. After all we know the Standard Model Lagrangian,
so for any set of incoming and outgoing particles we should be able to write
down all Feynman diagrams, construct the corresponding amplitudes, sum
them and square them to get a cross section. Then we can simply sample the
phase space for the particles and weight the events with the cross section.
There is really no reason why this cannot be done completely automatically
in a computer program.

OK, we can’t simulate full events since the Standard Model Lagrangian
describes quarks and gluons, while at experiments we only see hadrons. And,
of course, it is difficult to include loop diagram, and the tree-level diagrams
diverges for situations where we eg. have soft or collinear gluons. But still.
Wouldn’t it be nice to have such a program.
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Literature

Most of this course is covered by

R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider

Physics, Cambridge University Press (1996).

and for this cycle the most relevant chapters are 1 and 3. Additional input
can be found in lecture notes from various summer schools, eg.

T. Sjöstrand, Monte Carlo Generators, hep-ph/0611247.

Also the manual for the Madgraph and CompHEP program contains useful
input, especially relevant for completing the exercises:

The MadGraph program: http://madgraph.hep.uiuc.edu/
The CompHep program: http://comphep.sinp.msu.ru/

Goals

• Order-of-magnitude estimates of cross sections

• Simple 2 → 1 and 2 → 2 processes with Mandelstam variables

• n-body phase space and convenient transformations thereof

• the basic QCD and electroweak processes

Comments to exercises

This cycle was planned to extend over two weeks, which is why the amount
of exercises is larger than for the following cycles.
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Exercises (first week)

1. Assume a resonance of mass M at rest. It decays isotropically to two
massless particles. Calculate the p⊥ spectrum of these particles and
plot it schematically. (The answer is the famous Jacobian peak, once
used to discover the W through the channel W → eν.)

2. Study the three-body phase space in a process such as
Z0 → q(1)q̄(2)g(3), with vanishing quark (and gluon) masses.
a) Introduce the energy fractions xi = 2Ei/Ecm in the Z0 rest frame
and show that they are related to the Lorentz invariants yjk = m2

jk/s,
where s = E2

cm, by xi = 1 − yjk, i, j, k cyclically permuted.
b) Show that the three-body phase space can be written as

d(LIPS) ∝ s d(cosθ1) dϕ1 dϕ12 dx1 dx2 (1)

where θ1, ϕ1 give the direction of the quark and ϕ12 the azimuthal
angle of the anti-quark around the quark direction.

3. a) Show that the one-body phase-space expression

d3p

E
= d2p⊥ dy (2)

where p⊥ is counted transverse to the rapidity axis.
b) The nice properties of rapidity under longitudinal boosts leads to
the multiplicity distribution dn/dy being roughly constant in the
central region around y = 0, and also to the transverse-momentum
spectrum dn/dp⊥ being almost the same for different central rapidity
slices. What can one then say qualitatively about the dn/dη
spectrum around η = 0?
Hint: use that dy/dη = (dy/dpz)/(dη/dpz).

4. Show that, in a 2 → 2 process with massive incoming and outgoing
particles,
s + t + u =

∑

m2
i .

5. Study a 2 → 2 process with massive outgoing particles, but massless
incoming ones. Calculate the kinematically allowed t range, and show
that

p2

⊥
=

tu − m2
3m

2
4

s
(3)
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6. Assume two massless particles characterized by their E⊥, η and ϕ
values.
a) Show that a four-vector representation is

p = (E⊥ cosh η; E⊥ cos ϕ,E⊥ sin ϕ,E⊥ sinh η) (4)

b) For fixed E⊥1 and E⊥2 values and small angular separation, show

that their invariant mass only depends on R =
√

(∆η)2 + (∆ϕ)2

rather than on ∆η and ∆ϕ separately.

7. The process e+e− → γγ has the cross section

dσ

dt
= α2

em

π

s2

t2 + u2

tu
. (5)

(Since the final-state particles are identical, one may include a further
factor of 2 in the dσ/dt expression but, in order not to double-count,
one would then only integrate over half the normal phase space.)
a) Enumerate which Feynman graphs contribute and show that a
rule-of-thumb estimate is consistent with the above expression.
b) Estimate, by suitable analytic approximations, the cross section at
LEP2,

√
s ≈ 200 GeV, for transverse momenta p⊥ > 1 GeV.

8. The three most important QCD 2 → 2 processes qq′ → qq′

(= qq′ → qq′), qg → qg and gg → gg are all dominated by gluon
exchange. The cross sections

dσ̂

dt̂
(qq′ → qq′) =

πα2
s

ŝ2

4

9

ŝ2 + û2

t̂2

dσ̂

dt̂
(qg → qg) =

πα2
s

ŝ2

(

ŝ2 + û2

t̂2
−

4

9

ŝ2 + û2

ŝû

)

dσ̂

dt̂
(gg → gg) =

πα2
s

ŝ2

9

4

(

3 −
t̂û

ŝ2
−

ŝû

t̂2
−

ŝt̂

û2

)

are thus approximately proportional. (A factor 1/2 for identical final
particles has already been included in the last expression, so don’t
worry about such aspects.)
Find a ‘structure function’, i.e. a linear combination of parton
distributions that it is therefore possible to access in pp/pp collisions.
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Exercises (second week)

1. One of the search channels for a Higgs will be gg → h0 → γγ. This
channel has a background coming e.g. from qq → γγ.
a) Use MadGraph to compare these two cross sections, e.g. for a
120 GeV h0 and assuming a 2 GeV experimental mass window for the
background. Each of the photons is expected to have a p⊥ > 30 GeV.
b) Higher-order corrections implies that additional jets may be
produced. Assume you allow one extra gluon jet in the final state,
with p⊥ > 40 GeV. Can such a requirement improve your
signal-to-background ratio? At what price in terms of number of
events, e.g. for one year of running as 1034 cm−2s−1 luminosity? Note
that “our” photons will have to be isolated from the jet(s) not to be
confused with photons e.g. from π0 decays inside the jets.

2. Often quark masses can be neglected in jet cross sections. However, if
one is studying bb or tt production at small p⊥ this is not the case.
Therefore find the analytical expression dσ̂/dt̂ for qq → QQ and/or
gg → QQ, Q = b or t. Combine with phase space to say something
about the shape of dσ̂/dp2

⊥
at small p⊥.

3. Pick a Supersymmetry scenario and study the cross section for a
process such as qg → q̃g̃, e.g. plotted as a function of p⊥. Compare
that with the p⊥ spectrum of the standard-model one qg → qg. How
much different are they? How much of this is phase space and how
much the processes themselves. (Let the sparticle masses become
small!) Is there some variable that better than p⊥ shows the
similarities also for non-negligible sparticle masses?

4. MadGraph can be used to produce a Les Houches Event File of
parton-level processes that can be generated in full with Pythia. Use
this to find the expected charged-multiplicity distributions for LHC
events of the kind qq → Z0bb, given some reasonable cuts on the
process. (This process is a background to qq → Z0h0 with h0 → bb.)
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