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The representation of observables

...some simple formulae for operators
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The recipe for cooking up operators

     1.  take classical variable 
     2.  replace as follows:

       

           

      3.  do the same for y and z
      4.  same applies to relations
           between variables
      

x xψ→ xψ=

px pxψ i h
2π
------–=

x∂
∂ψ→
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The position operator(s)

A vector* operator

where   
,    and  

are the component operators

* Operators of this form are not ordinary 3d vectors!

R xux yuy zuz+ +=

xψ xψ= yψ yψ= zψ zψ=

operators act
   only 

on wavefunctions
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The linear momentum operator(s)

A vector operator

where
   

,  and 

are the component operators
4 What is the operator for ?

p pxux pyuy pzuz+ +=

pxψ i h
2π
------–=

x∂
∂ψ pyψ i h

2π
------–=

y∂
∂ψ pzψ i h

2π
------–=

z∂
∂ψ

p
2
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Multiplication of operators

   
 What does it mean to ‘multiply’ operators?

     It means that we apply the operator 
     to a wavefunction more than once:

e.g.  where 
   gives us
 

px
2ψ px pxψ( )= pxψ i h

2π
------–=

x∂
∂ψ

px
2ψ i h

2π
------– 

  px x∂
∂ψ

 
  i h

2π
------– 

  2

x∂
∂

x∂
∂ψ

 
  h

2π
------ 

  2

x
2

2

∂

∂ ψ–= = =
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The operator for orbital angular momentum

           The classical representation (variable)  is  , 
           so the quantum mechanical representation (operator)
           will be , which gives

, , 

           For example, 

L r p×=

L r p×=

Lx ypz zpy–( )= Ly zpx xpz–( )= Lz xpy ypx–( )=

Lxψ ypz zpy–( )ψ ypzψ zpyψ– y pzψ( ) z pyψ( )–= = =

Lxψ i h
2π
------– y

z∂
∂ψ z–

y∂
∂ψ

 
 =
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The kinetic energy operator

         
         We use the formula of classical mechanics:  

 

          where

K 1
2m
-------p

2 1
2m
------- px

2
py

2
pz

2
+ +( )

1
2m
-------– h

2π
------ 

  2
∇∇2

= = =

∇∇2

x
2

2

∂

∂

y
2

2

∂

∂

z
2

2

∂

∂
+ +=
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The total energy operator (when E=K+V)

     We assume an object in motion (K) in a region 
     of a potential V:

       Observe that the potential operator is given by 
    the classical variable because it depends on x, y, z

The operator  is called the Hamiltonian operator
(‘the Hamiltonian of the system’)

H K= V x y z, ,( )+
1

2m
-------– h

2π
------ 

  2
∇∇2

V x y z, ,( )+=

H
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The operator E

It gives the time-dependence of energy eigenstates

By combining with the expression E=K+V, we obtain:

the time-dependent Schrödinger equation

E i h
2π
------

t∂
∂=

i h
2π
------

t∂
∂Ψ 1

2m
-------– h

2π
------ 

  2
∇∇2Ψ V+ Ψ=
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The commutator operator

Can we ‘multiply’ two operators  and  in any order?

We can, if their commutator  is zero.

Definition of the commutator operator:

Physical meaning of :
the operators  and  have 

common (simultaneous) eigenstates

A B

A B,[ ]

A B[ , ] AB BA–=

A B[ , ] 0=
A B
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Examples of commutators

1. position and momentum in the same direction:

 (same relation for y and z)

            2. angular momentum in different directions:

 (and cyclic permutations) but

x px[ , ] i h
2π
------=

Lx Ly[ , ] i h
2π
------Lz=

L
2

Lx[ , ] L
2

Ly[ , ] L
2

Lz[ , ] 0= = =



RAF211 - CZJ 12

Common eigenstate problem in atoms

Assume that we have an object (atom) in a potential V(r)
and we are interested in states of constant total energy, E.

The following relations hold:

So we can measure simultaneously: E, L2, Lz.

x H,[ ] 0 y H,[ ] 0 z H,[ ] 0≠,≠,≠

H px[ , ] 0 H py[ , ] 0 H pz[ , ] 0≠,≠,≠

L
2

H[ , ] H Lz[ , ] L
2

Lz[ , ] 0= = =
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Mean value and Expectation value

We measure the observable A n times: ,  , ..., 
and we calculate the mean value as

Postulate of Quantum Mechanics:

where 
 is the expectation value of the operator  in the state .

a1 a2 an

a 1
n
--- ai

i 1=

n

∑=

a O〈 〉 O〈 〉 ψ∗Oψ Vd∫= = =

O〈 〉 O ψ
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The standard deviation

Gives the spread of the measured values 
around the mean value

where  = relative frequence of value 
Quantum mechanically, we calculate

∆O wk ak a–( )2

k
∑=

wk ak

∆O ψ∗ O O〈 〉–( )2ψ Vd∫=
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The Heisenberg principle

Assume that we measure P and Q in the state  
(which is not an eigenstate of their operators).

The following holds for their standard deviations:

If the operators do not commute, 
the right-hand side is not zero. Examples: 

, 

ψ

∆P( )2 ∆Q( )2 1
4
--- ψ∗ PQ QP–( )ψ Vd∫[ ]

2
– 

 ≥⋅

∆px ∆x⋅ h 4π( )⁄= ∆E ∆t h 4π( )⁄=⋅
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Conserved Observables

An observable is conserved (i.e. its expectation value
 does not change with time) when its operator commutes

with the Hamiltonian (of the system we study)

Application: the angular orbital momentum 
of atoms is a constant of the motion

td
d O〈 〉 2πi

h
-------- H O,[ ]〈 〉=


