Interaction course - VT 2003

Week 19 – Lund

Christina Jarlskog

Michael Ljungberg

Monte Carlo exercises with Geant4

Geant4 is a detector simulation toolkit written in C++. Although it has a rather complicated structure, the new user needs to be familiar with only a small number of features of the program in order to run simple examples. Moreover, the ‘syntax’ of the code is defined by the definition of its classes, which in practice implies that no previous knowledge of C++ is required.

This manual introduces the new user to the main features of C++ and to basics of Geant4. A few simple Geant4 simulations are then presented with a view to illustrating the interactions of particles with various materials.

Overview of C++

As a general note to C++ programming, the following can be remarked.

A C++ program performs a given task by the combined operation of program entities called ‘objects’. In a given program and at a given moment during its execution, there will be a number of objects acting, each of them having a different ‘type’, i.e. performing a differerent operation. The ‘type’ of the object is defined by a piece of code called ‘a class’. A class has a name, i.e. ‘Particle’, which in the coding is used to define the type of the object in the same way as the keywords ‘float’ or ‘int’ are used in FORTRAN. For example, we can define an object of the type Particle by writing:

Particle Electron;

(C++ commands end with a semicolon). In order for a class to describe an object and allow the main program to retrieve information about it, it must have a number of variables (called ‘members’) and a number of functions, i.e. routines, (called ‘methods’). For example, the class Particle can have the following members:

float mass;

int charge;

and the following methods:

float GetMass();

int GetCharge();

void SetMass(float x);

void SetCharge(int y);

The parentheses in the name of a method indicate the arguments that we pass to the method (as the input arguments of a FORTRAN routine). The type of the method shows the type of the parameter that is returned by the method to the main program (as the output argument of a FORTRAN routine). In the main program, we can then have:

Particle Electron;

Electron.SetMass(0.51);

int echarge = Electron.GetCharge();

The lines above show that a method M is called for the object A by writing

A.M;

The example of the Particle class above shows that we can use a class as soon as we know what its members and methods are, i.e. without knowing e.g. how the program actually retrieves the charge of the particle. This is called ‘encapsulation’ in object-oriented programming and is achieved by writing the code of a class in two files: one ‘header’ file containing the list of members and methods of the class (that the user must have access to) and one ‘implementation’ file that tells the system how to perform the actions of the methods. The user needs not have access to the implementation files and usually does not.

Header files have the extension .hh and implementation files have the extension .cc. Let us assume a C++ program using ten different types of objects. There will then be ten header files and ten implementation files. All header files are stored in a directory called ‘/include’ whereas all implementation files are stored in a directory called ‘/src’. The program using the classes is called the ‘main’ program
 and is stored in a single file (with the extension .cc). The directories /include and /src are usually subdirectories to the directory containing the main program. This top directory also contains the file where the input parameters of the main program are stored. This file has the extension .mac; there are usually many variants of it in the top directory.

A main program using, e.g. the classes Particle and Detector, has the following structure:

#include Particle.hh

#include Detector.hh

int main()

{

Particle Electron;

Electron.SetMass(0.51);

int echarge = Electron.GetCharge();

// some other commands

return 0;

}

A function begins with its type, name and arguments, e.g.

 int main()

and then the commands belonging to the function follow enclosed in braces { }. The lines within the braces are called the ‘body’ of the method. The main program consists of only one method, namely the main() method. Before this method there are some ‘include statements’, which tell the system which classes the main program uses. The name of the class is the same as the name of the header file and implementation file in which the class is coded. For example, the Particle class is coded in the files /include/Particle.hh and /src/Particle.cc. The type of the main() method is int (returning an error code of integer type to the system after execution) and can be omitted.

Introduction to Geant4

In order to run a simulation with Geant4, one has to do the following:

1. define the geometry of the detector,

2. define the materials which are used to build the detector,

3. specify the particles and physics processes that will be included in the simulation,

4. define the beam,

5. instruct the program on which actions are to be taken during the simulation (user action classes).

The definitions in steps 3 and 5 can only be changed in the code (i.e. before the program is compiled). Steps 1 and 2 can be partly performed by means of the macro files (i.e. we can modify the geometry and the selection of materials after the program has been compiled). The beam is usually defined the compilation (for a program which is run interactively, as will be the case in the exercises that follow). In this section, we address some of the points above.

Definition of the geometry and materials of the detector

The geometry and the materials of the detector are defined in a class called XXXDetectorConstruction, i.e. in the files /include/XXXDetectorConstruction.hh and /src/XXXDetectorConstruction.cc (XXX is a prefix that specifies which main program is the class used by).

The basic concept in the construction of the detector is this of a ‘volume’. The detector is made of volumes, each volume being contained in a larger volume. The largest volume is called the ‘world volume’. Each volume is defined by its geometrical shape, dimensions, position and material.

In order to define materials, we need to define first elements or compounds. The G4Element class describes the following properties of an element: atomic number, number of nucleons, atomic mass, etc. The G4Material class defines a material by its macroscopic properties: density, state, temperature, pressure, etc.

Beam definition

The beam can be defined in the main program or in the .mac file. In the exercises, we will use the latter. The following commands are available:

Command /gun/List

Guidance: lists available particles.

 Command /gun/particle

Guidance: sets particle to be generated.

Candidates: proton, neutron, gamma, e-.

Command /gun/energy

Guidance : sets kinetic energy.

Candidates for the unit: eV, keV, MeV.

Command /gun/position x y z

Guidance : sets starting position of the particle.

Default value for unit: cm

Candidates: m, cm, mm, mum, nm, angstrom, fermi

Command /gun/number N

Guidance : sets the number of particles to be generated.

Range of parameters : N>0

In order to run for an ion beam, we have to give the following commands

/gun/particle ion

/gun/ion Z A Q

where Z is the atomic number, A is the number of nucleons and Q is the charge of the ion.

Retrieving information in the output file: Run, event and track

Geant4 can give us information about the status of the simulation at three levels: the run, the event and the track. A ‘run’ is a simulation that includes a certain number of ‘events’. An ‘event’ is an interaction between one beam particle and the detector (including all interactions caused by the products of the first reaction). In each event, a number of (primary and secondary) particles are present. These are called ‘tracks’ in the simulation.

One usually stores information about the event in an output text file in order to see what interactions each particle has initiated, how much energy was lost in them, which is the ‘parent’ particle of the track, etc. How detailed this information should be is set by the ‘verbosities’ of the run. In the .mac file, we can e.g. have

/run/verbose 1

/event/verbose 1

/tracking/verbose 1

The above commands will generate printouts for all three levels in the simulation.

Exercises – general instructions

All students have the same home area, so in order to avoid overwriting files, there is a subdirectory for each student.

Go to your subdirectory by typing:

cd my_name

In your subdirectory, there is one directory for each exercise. These are (give the command ll to see them):

electrons-filter/

em-shield/

em-shield-phantom/

protons-bragg/

protons-shield/

neutrons-moderator/

In each of these directories, there is one file with the extension .cc. This is the main program for each exercise. Each exercise directory also contains one /include subdirectory and one /src subdirectory, where the classes are stored.

All programs are compiled and ready for execution. You only need to recompile the main program if you modify a file in the /include or /src directories. To compile a main program, e.g. shield.cc, issue the following commands:

make clean

make

In order to run the program, type:

$G4WORKDIR/bin/Linux-g++/shield shield.mac > shield.out

Some of the programs produce a histogram file, which has the same name as the main program and the extension .hbook. Histogram files can be opened using the program paw++. You can save a plot in .ps format in order to print it:

lpr my_file.ps

Description of programs and tasks

A. Program em-shield/shield.cc.

The program simulates electromagnetic interactions. The geometry of the detector consists in three volumes (called 'absorbers'). The dimensions and materials of the volumes are set in the shield.mac file. The program is used to simulate shielding: the first and third volumes are 'made of' air and the second volume is made of lead or concrete. The beam is coming from the left and hits the shield perpendicularly at its center. The program produces the histogram file shield.hbook, which contains three histograms, each showing the energy deposited in each of the absorbers. The energy distributions are normalized to the beam energy.

Tasks:

Gamma

1. Run a beam of gamma particles with energy 1 MeV. Take some time and work with the vrmlviewer and learn to change the views.

2. Run a simulation for Air/Water/Air geometry for the following energies 0.1 MeV, 0.5 MeV, 1 MeV, 10 MeV and 100 MeV. Try and describe the distribution of scattered photons and compare with the Klein-Nishina theory. Select a proper number of the BeamOn. The slab thicknesses for Air/Water/Air to 1m/10cm/1m.

3. Run the same simulation as above but now with the combination Air/Lead/Air. Described what you see and explain the difference based on what you have learned from the theory. PS If the vrml screen becomes black you might need to reduce the BeamOn number. You might reduce the lead thickness here.

4. Use the materials Air/Water/Absorb in the configuration. The material Absorb is lead with a density of 1000 g/cm3 and is used to completely absorb all photons in the third layer. From the information in the last part of the printout in the file shield.out try and calculate the buildup of energy after material 2 as function of water thickness. Do this for some different photon energies and two materials. A tip: in these simulation you might need to increase the BeamOn values to increase the statistics. Also, set all verbose flags in the macro file to 0. Otherwise, the file shield.out will be huge!

Electrons

5. Select material Air/Air/Air and 1 m of each compartment. Simulate an e- beam with energies 0.1 MeV, 1 MeV, 10 MeV and 100 MeV. Note the track change. Try and count the number of delta particles and see where these appear on the tracks. Is this consistent with the theory?

6. Select material Air/Lead/Air with compartments 1m/1cm/1m. Simulate an e- beam of the energies 0.1 MeV, 1 MeV, 10 MeV and 100 MeV. What happens with the 0.1 and 0.5 MeV electrons?

7. Repeat the simulation above with the materials Vacuum/Lead/Air. Notice any difference?

8. Repeat the simulation above with the materials Vacuum/Tungsten/Air. Notice any difference?

B. Program proton-shield
This program includes interaction for a proton impinging on a slab of material.

Task:

9. Try some different energies for the proton and see how the tracks looks like. Change the material from a low-Z material to a high-Z material and find the energy when the proton pass through a certain thickness of the material. Is this energy/thickness consistent with the using particle-ranges that you can calculate based on the stopping-power information. If discrepancies occur – please try and explain.
C. Program proton-bragg

This program divide the imparted energy per distance along the track to calculate a Bragg peak as a histogram. This program can only be run on a limited number of computers because it needs a special plotting program installed on the computer.

Tasks:
10. Try some proton energies and some materials and look how the Bragg peak looks like. Does the shape depend on the energy or material? What is the optimal proton energy to treat a 2 cm diameter tumor located at a depth of in a water equivalent part of the body? How about 5 cm tumors on the same locations?
B. Program em-shield-phantom/shield.cc.

This program is a variant of the program in em-shield/. The new elements are a water volume and the position of the beam gun. The water volume is a cube of 50 cm side and it is placed in the center of the first 'absorber' (air). The beam gun is located at 1 m above the water volume (the direction of the beam is now vertical). The position of the beam gun can be modified in the shield.mac file.

Tasks:

11. Explore this geometry for gamma and electron beams.
� The main program is usually called the ‘main() method’ or ‘main() function’.

