

Peter Christiansen

(Lund University)

for the ALICE Collaboration

LUNDS UNIVERSITET

Outline of talk

- The Particle IDentification (PID) capabilities of the ALICE experiment
- Short introduction to the different p_{T} regimes of particle species dependent physics
- Intermediate p_{T} results
 - Baryon to meson ratio at LHC
 - . Identified elliptic and triangular flow
- High p_T results
 - Identified R_{AA} at $p_T > 6 \text{ GeV/c}$
- Conclusions

ALICE as a charged particle PID³ detector (central harrel)

May 28, 2012

High p_T identified particle production in ALICE Hard Probes 2012, P. Christiansen (Lund)

The 3 regimes of $p_{\rm T}$ and their particle species dependence

- Low: $p_T \le 2 \text{ GeV/c}$
 - . Radial flow (mass dependence)
- Intermediate: $2 \le p_T \le 8$ GeV/c
 - . Flow peaks (mass dependence)
 - Coalescence?
 (valence quark scaling)
 - Color anomalous baryon fragmentation? (string junction)
- High: $p_T \ge 8$ GeV/c
 - Vacuum fragmentation?

Why do we expect particle species dependent modifications even at higher p_T ?

- Large effects at intermediate $p_{\rm T}$ does this effect just disappear?
- . The low value of $\mathsf{R}_{\mathsf{A}\mathsf{A}}$ suggests that most hard partons interacts strongly with the medium

- S. Sapeta and U.A. Wiedemann, Eur.Phys.J. C55 (2008) 293:
 - Indirect
 - "in all models of radiative parton energy loss, the interaction of a parent parton with the QCD medium transfers color between partonic projectile and target. <u>This changes the color flow in the parton shower and is</u> <u>thus likely to affect hadronization</u>."
 - Direct
 - "In addition, flavor or baryon number could be exchanged between medium and projectile."

Low p_T : spectra and particle ratios

- . Integrated particle ratios are similar at RHIC and LHC for K/ π and p/ π (feeddown corrected)
 - But protons are clearly "pushed out" to higher p_{T} at LHC: stronger flow

- The baryon to meson ratio is also enhanced at LHC
 - More so than at RHIC
- But much less than predicted in some coalescence models
 - R.C. Hwa and C.B. Yang, Phys. Rev. Lett. 97, 042301 (2006).
- Recent EPOS model calculation describes the data well: K. Werner, arXiv:1204.1394.

Bulk or jet effect? Parallel talk: Misha VELDHOEN Monday 16:30

Elliptic and triangular flow for identified particles at high $p_{\rm T}$

PID using TPC: dE/dx - $\langle dE/dx \rangle_{\pi}$ 4.5 < p_T < 5.0 GeV/c

 PID using "clean" regions of dE/dx on the relativistic rise

Elliptic and triangular flow for identified particles at high $p_{\rm T}$

- The v_2 and v_3 also peaks in the intermediate $p_{\rm T}$ region
 - . Large particle species dependence
- End of hydrodynamic flow for $p_T \ge 9-10$ GeV/c ?
 - Triangular flow which is not sensitive to collision geometry becomes small
 - No or small particle species dependence for v₂ (little mass dependence)
 - And pion v_2 is well described by jet quenching prediction

Parallel talk: Jan RAK Monday 15:00

R_{AA} for unidentified charged particles

Parallel talk: Michele FLORIS Monday 17:50 Poster: Philipp LUETTIG

- Several models capture the essential features (but some miss absolute scale)
- The <u>relative</u> particle species dependent effects should be easier to describe as complicated space time dynamics probably falls out in the "double ratio"

Charged pion R_{AA}

- Is smaller than charged particle R_{AA} for $p_T < 6-8$ GeV/c
- Agrees with charged particle R_{AA} for $p_T > 6-8$ GeV/c

Comparison of charged and neutral pion R_{AA}

- Complementary analyses with different systematics
 - Important as these measurements will be limited at LHC by systematic errors

Charged kaon+proton R_{AA}

p_T [GeV/c]

- Is <u>larger</u> than charged particle R_{AA} for $p_T < 6-8$ GeV/c
- Agrees with charged particle R_{AA} for $p_T > 6-8$ GeV/c

A general model with particle species dependent modifications

R_{AA} for light quark hadrons

- Light quark hadrons with $p_{T} > 8$ GeV/c are equally suppressed
- This seem to indicate that medium interactions do not affect fragmentation for $p_{\rm T}$ > 8 GeV/c fragmentation occurs into vacuum
- Light quark results also provide a baseline for understanding heavy quark energy loss

May 28, 2012

High p_T identified particle production in ALICE Hard Probes 2012, P. Christiansen (Lund) Parallel talk: Zaida CONESA DEL VALLE Monday 16:30

Conclusions

- The intermediate $p_{\rm T}$ region is rich in exciting physics where PID provides much additional information
 - Large baryon to meson ratios and large particle species dependent flow: v_2 and v_3
- The transition (6 $\leq p_T \leq$ 10 GeV/c) to a hard high p_T region where particle species dependent effects are much smaller is observed both in the identified R_{AA} and v_2 and in the small value of v_3
- Longer term perspective: jet studies including PID

Thank you!

Backup slides

May 28, 2012

Transverse momentum resolution

Comparison of low pT and high p_T²² charged pion spectra

High p_T identified particle production in ALICE Hard Probes 2012, P. Christiansen (Lund)

May 28, 2012

Spectra and RAA for unidentified²³ particles

May 28, 2012

How well defined is PID fragmentation?

- One of the goals of ALICE analyses is to improve this (pp)
- But it also implies that we need to have an experimental baseline:
 - Unidentified vs. identified e.g. RAA
 - pp vs. AA e.g. \lambda/K⁰_s
 - beam energy variation e.g. LHC vs. RHIC

STAR results

Note there that STAR ratios << 1 Valence quark fragments at high p_T

Color anomalous baryons fragmentation

Fig. 1 The $q \rightarrow gq$ (a) and $g \rightarrow gg$ (b) transitions in the medium and possible color states of the final two parton systems

- Color anomalous baryon fragmentation (P. Aurenche, B.G. Zakharov, Eur.Phys.J. **C71** (2011) 1829.). The model is aimed at explaining the baryon anomaly but these effects persists out to higher p_{T} .
 - A hard scattered quark (triplet) can pickup a gluon from the medium \rightarrow sextet state
 - a gluon (octet) can pick up another gluon \rightarrow decuplet state
 - The fragmentation of these color states is very different from normal quark (triplet) and gluon (octet) states and relies on string junction (soft effect).