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Summary of lecture 1 and 2:
Main ingredients in LHC success

● Energy → 10 times higher cross section than Tevatron and integrated 

luminosity already ½ at end of 2011!

LHCLHC

Tevatron

Tevatron √s=1.8TeV
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Lectures on accelerator physics

● Lecture 3 and 4: Examples
● Examples of accelerators



  

Rutherford’s Scattering (1909)

 Particle Beam
 Target
 Detector



  

Results



9/4-2013 Accelerator lectures 3 and 4 5

Did Rutherford get the Nobel Prize 
for this?

● No, he got it in 
Chemistry in 
1908



  

Sources of “Beams”
 Radioactive Decays

 Modest Rates
 Low Energy

 Cosmic Rays
 Low Rates
 High Energy

 Accelerators
 High Rates
 High Energy
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Think time

● How to accelerate?



  

Accelerator Physics for Dummies

 Electric Fields 

ACCELERATES
 Aligned with field
 Typically need very high fields

 Magnetic Fields

BENDS/CONFINES/FOCUSES
 Transverse to momentum
 Cannot change |p|

Lorentz Force



  

Circle or Line?
 Linear Accelerator

 Electrostatic
 RF linac

 Circular Accelerator
 Cyclotron
 Synchrotron
 Storage Ring
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Linear accelerators

● DC
● AC
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Cockroft-Walton - 1930s

FNAL InjectorCascaded rectifier chain

Good for ~ 4 MV

Cockroft-Walton generator
diagram

Increase voltage to
800 kV
(enough for nobel
prize!)

Very nice flash interactive animation:
http://www-outreach.phy.cam.ac.uk/camphy/cockcroftwalton/cockcroftwalton8_1.htm

http://www-outreach.phy.cam.ac.uk/camphy/cockcroftwalton/cockcroftwalton8_1.htm
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Van-de Graaff - 1930s
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Van-de Graaff II

First large Van-de Graaff

Tank allows ~10 MV voltages
Tandem allows x2 from terminal voltage

20-30 MeV protons about the limit
Will accelerate almost anything (isotopes)
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DC acceleration in photo multiplier 
tube (PMT)

● Photons are converted (with loss) to electrons 
at the photocathode

● Electrons are amplified in several steps
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Gustaf Ising
The “father” of AC acceleration

● “In 1924 Gustaf Ising, a Swedish physicist, 
proposed accelerating particles using 
alternating electric fields, with “drift tubes” 
positioned at appropriate intervals to shield the 
particles during the half-cycle when the field is 
in the wrong direction for acceleration. Four 
years later, the Norwegian engineer Rolf 
Wideröe built the first machine of this kind, 
successfully accelerating potassium ions to an 
energy of 50,000 electron volts (50 kiloelectron 
volts).”
● From Britannica Academic Edition
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Linear Accelerators
 Proposed by Ising (Swedish) (1925)
 First built by Wideröe (Norwegian) (1928)

Rolf Wideröe as a young man.
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LINAC 
principle 

I

V



9/4-2013 Accelerator lectures 3 and 4 19

LINAC 
principle 

II

Standing wave 

When v=c, the design is easy
For electrons this is the normal situation 

http://en.wikipedia.org/wiki/Image:Standing_wave.gif
http://en.wikipedia.org/wiki/Image:Standing_wave.gif
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Linac principle in action

● A small game here:
http://www.hep.ucl.ac.uk/undergrad-projects/3rdyear/PPguide/applets/accelerator/ex.html

http://www.hep.ucl.ac.uk/undergrad-projects/3rdyear/PPguide/applets/accelerator/ex.html
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LINAC 
principle 

III

Ln corresponds to half wavelength

V

Answer:
vn=√2neV/m

1/(2f)=Ln/vn  so 
Ln= vn /(2f)

Can use fixed frequency if L is made longer to
match increase in velocity

Calculate Ln assuming
v(inital)=0 and vn non-relativistic
and AC frequency f:
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Radio Frequency (RF) cavities for 
linear acceleration

● RF cavities (sometimes also called resonance 
cavities) are the modern way to accelerate

● The cavity works a bit similar to a LC 
resonance circuit creating a strong accelartion 
field 
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Example of RF cavity from DESY

● From 
http://newsline.linearcollider.org/2012/11/21/major-goal-achieved-for-high-gradient-ilc-scrf-cavities/

“We established two gradient goals: to produce cavities 
qualified at 35 Megavolts per metre (MV/m) in vertical tests and 
to demonstrate that an average gradient of 31.5 MV/m is 
achievable for ILC cryomodules.” 

http://en.wikipedia.org/wiki/Resonator

Very strong (resonant) oscillating electric field
inside cavity provides acceleration 

http://newsline.linearcollider.org/2012/11/21/major-goal-achieved-for-high-gradient-ilc-scrf-cavities/
http://en.wikipedia.org/wiki/Resonator
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RF cavity at LHC

● From http://home.web.cern.ch/about/engineering/radiofrequency-cavities
“High-power klystrons (tubes containing electron beams) drive 
each RF cavity on the LHC. A high-power electron beam inside 
the klystron modulates at 400 MHz. Power is extracted through 
a rectangular pipe of conducting metal called a waveguide, 
which leads to the RF cavity. Each cavity can achieve maximum 
voltage of 2 MV, making 16 MV per beam.”

http://home.web.cern.ch/about/engineering/radiofrequency-cavities
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What is super conducting in a super 
conducting RF cavity?

● Answer: The inside surface => no resistance => the alternating 
electric field is used for pure acceleration

● From 
http://home.web.cern.ch/about/engineering/radiofrequency-cavities
“The 16 RF cavities on the LHC are housed in four cylindrical 
refrigerators called cryomodules – two per beam – which keep the RF 
cavities working in a superconducting state, without losing energy to 
electrical resistance.”

http://home.web.cern.ch/about/engineering/radiofrequency-cavities
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Proposed 1 TeV e+e- collider
Similar energy reach as LHC, higher precision
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Circular accelaratos

● Only AC
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The cyclotron principle

● For a non-relativistic charged particle going 
around in constant ring: mv=qBR

● What is the frequency of turns?
● Answer: f=qB/(2πm) 

● NB! does not depend on R
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Cyclotron

Proposed 1930 by Lawrence (Berkeley)
Built in Livingston in 1931

Avoided size problem of linear accelerators, early ones ~ few MeV

4” 70 keV protons
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Cyclotron animation

● http://www.aip.org/history/lawrence/images/epa
-animation.gif
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“Classic” Cyclotrons
Chicago, Berkeley, and others had 
large Cyclotrons (e.g.: 60” at LBL) 
through the 1950s

Protons, deuterons, He to ~20 MeV

Typically very high currents, 
fixed frequency

Higher energies limited by shift in revolution frequency due to relativistic 
effects.  Cyclotrons still used extensively in hospitals.
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Synchrocyclotron
 Fixed “classic” cyclotron problem by adjusting 

“Dee” frequency.
 No longer constant beams, but rather 

injection+acceleration
 Up to 700 MeV eventually achieved
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Other alternative to solve relativistic 
problem

● One also has solution where one modifies B(r) 
to take into account relativistic effects

● The advantage is that then one can still have 
continuous beam
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Betatron: an outsider

● The betatron was developed as a circular 
accelerator for electrons (where the cyclotron 
fails due to the relativistic effects)

● “A betatron is a cyclic particle accelerator developed 
by Donald Kerst at the University of Illinois in 1940 to 
accelerate electrons, but the concepts ultimately 
originate from Rolf Widerøe, whose development of an 
induction accelerator failed due to the lack of 
transverse focusing. Previous development in 
Germany also occurred through Max Steenbeck in the 
1930s.”, http://en.wikipedia.org/wiki/Betatron 
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Betatron: principle

● In a betatron the 
acceleration field is 
the induced electric 
field from varying the 
magnetic field (time 
dependence)

● Note that the same 
magnetic field is used 
to confine the 
particles!
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How does it look and work

Nice animation:
http://einstein1.byu.edu/~masong/emsite/S4Q50/betatron.html

Electromagnet ramping up field

Electron tube
Circular tracjectory

Dobald Kerst with first betatron 300 MeV betatron ~1950

http://einstein1.byu.edu/~masong/emsite/S4Q50/betatron.html
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fysN15 Accelerators 4

 Dipole magnet give circular motion

Acceleration in E-field

γmv2/R=qvB
p=γmv=qBR

B

R

RF
Acc field

Synchrotron

Towards the synchrotron
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fysN15 Accelerators 4

The alternating  E-field keeps particles in bunches
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Problem

● What happens when v~c?
● Why does the more energetic particles take longer 

to go around?!

● Answer:
● Larger radius (longer path length) for same B field!

– R=p/(qB)
– f=v/2πR

 =qBc/(2πp)

Δp>0→ΔR>0
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The transition energy

● The energy at which the higher (lower) energy particles in the 
beam starts to go slower (faster) around than nominal energy 
particles is called the transition energy 

● Need to “invert” longitudinal focusing = shift half a wavelength

● Technically challenging as beam focus diverges

Energy: 
Lower
Nominal
Higher

Before    After
   Transition
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Backup slides
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DC acceleration in photo multiplier 
tube (PMT)

● The more electrons we amplify the more energy 
we need = capacitors or reduce resistance
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