
#### Quarks and Hadrons



#### Quark masses?

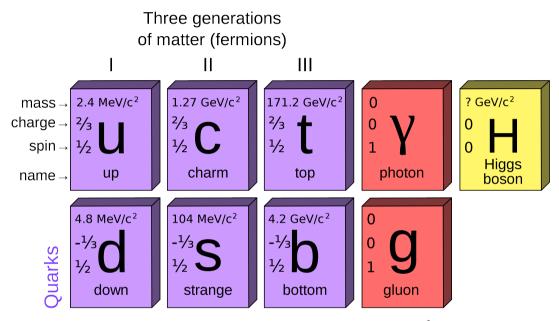
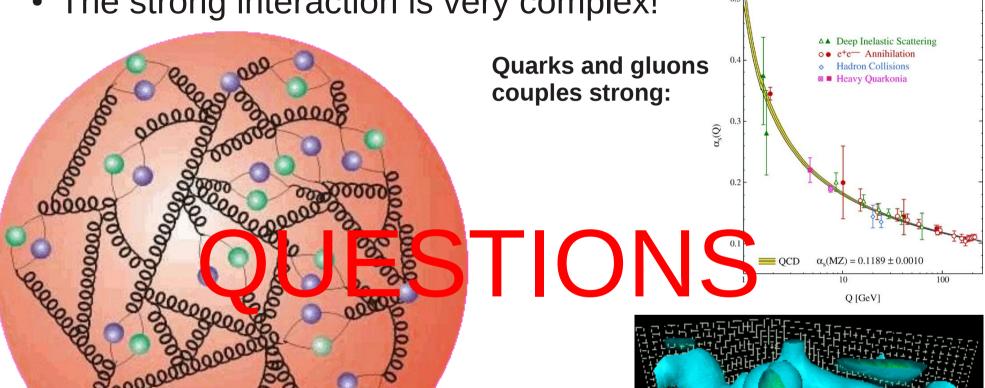



TABLE 3.1 The approximate masses of the quarks in  $GeV/c^2$  and their electric charges Q in units of e. Also shown are the values of the baryon number B, strangeness S, charm C, bottom  $\tilde{B}$  and top T, as defined in Section 3.2. The values for the corresponding antiquarks are equal in magnitude, but opposite in sign.

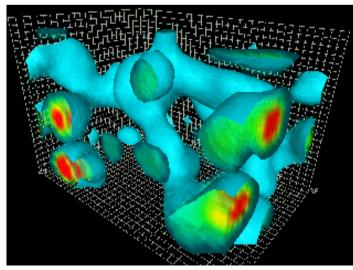
| Name    | Symbol | Mass              | Q    | В   | S  | С | $	ilde{B}$ | T |
|---------|--------|-------------------|------|-----|----|---|------------|---|
| Down    | d      | $m_d \approx 0.3$ | -1/3 | 1/3 | 0  | 0 | 0          | 0 |
| Up      | и      | $m_u pprox m_d$   | 2/3  | 1/3 | 0  | 0 | 0          | 0 |
| Strange | S      | $m_s \approx 0.5$ | -1/3 | 1/3 | -1 | 0 | 0          | 0 |
| Charmed | c      | $m_c \approx 1.5$ | 2/3  | 1/3 | 0  | 1 | 0          | 0 |
| Bottom  | b      | $m_b \approx 4.5$ | -1/3 | 1/3 | 0  | 0 | -1         | 0 |
| Top     | t      | $m_t \approx 174$ | 2/3  | 1/3 | 0  | 0 | 0          | 1 |

#### Two definitions

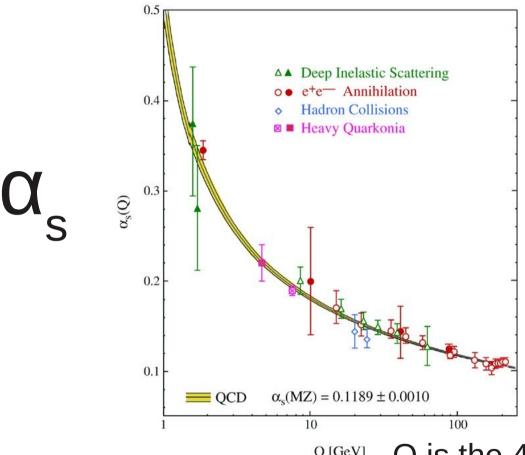

- Constituent quark mass:
  - The effective mass in the hadrons:
    - Mp ~ 938 MeV → Mu~Md~300 MeV
- Free quark mass:
  - The mass if the quarks were not bound inside hadrons
- Nonstandard situation:
  - Bound state heavier than non-bound state!
  - Probably we should not say bound but confined!

#### Mass due to confinement

- From Heisenberg's uncertainty relation:
  - $-\Delta p^*\Delta x \sim hbar$
- When we confine → restrict Δx
  - $-\Delta x \sim 1 \text{ fm} \rightarrow \Delta p \sim 200 \text{ MeV}$
  - And we know E=p² + m² so the confinement momentum dominates the energy (effective mass)


### Many difficult aspects about the strong force

• The strong interaction is very complex!




**Complex** vacuum:

CONFINEMENT



### The coupling is not fixed but runs!



Q is the 4 momentum transfer

In fact it becomes ~1 at the scale  $\Lambda_{\rm QCD}$ ~200 MeV

# Screening/running of the coupling in electromagnetic collisions

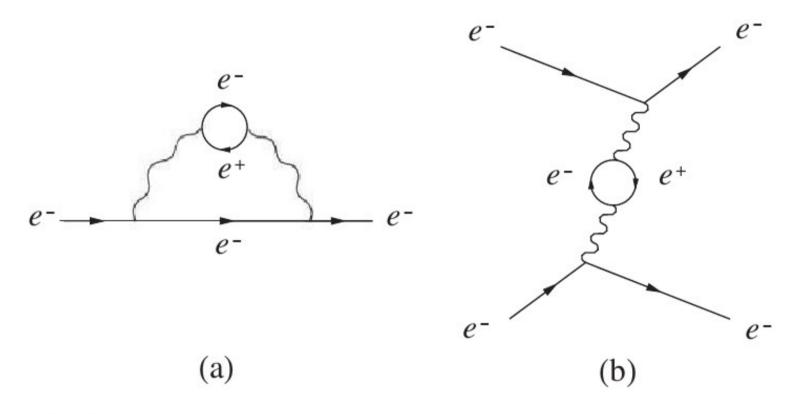
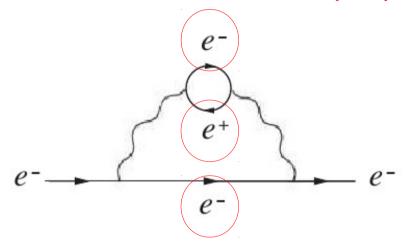
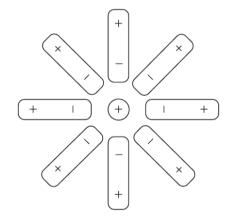





Figure 7.5 A more complicated quantum fluctuation of the electron, together with the associated exchange process.

# Due to (polarized) fluctuations the vacuum screens the charge! (vacuum ~ dielectric medium)

Notice the order: -, +, -!





The effect is measurable: At low energy;  $\alpha \sim 1/137$ 

Figure 7.6 Schematic diagram representing the polarization of the molecules of a dielectric by a positive charge placed within it.

At high energy transfers (mZ):  $\alpha \sim 1/127$ This change is fully described by the theory!

# In QCD there is anti-screening! (bare/"naked" charge is smaller!)

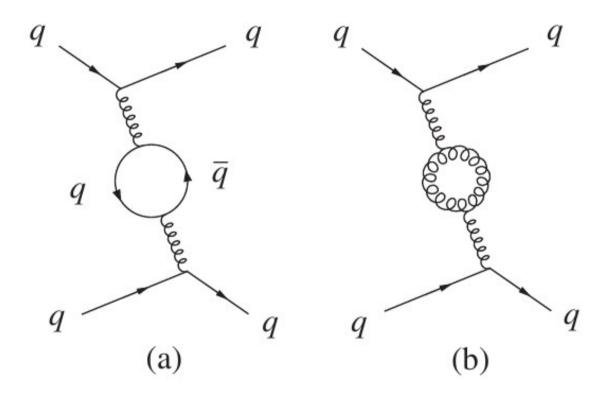
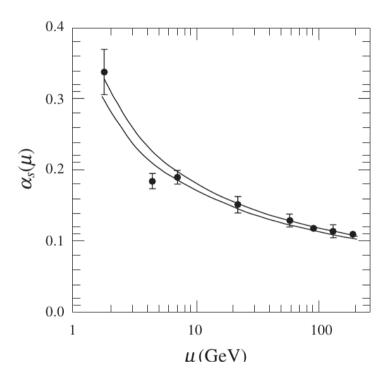




Figure 7.7 The two lowest-order vacuum polarization corrections to one-gluon exchange in quark—quark scattering.

### Full result for QCD



$$\alpha_s(\mu) = \alpha_s(\mu_0) \left[ 1 + \frac{(33 - 2N_f)}{6\pi} \alpha_s(\mu_0) \ln(\mu/\mu_0) \right]^{-1}$$
 (7.6)

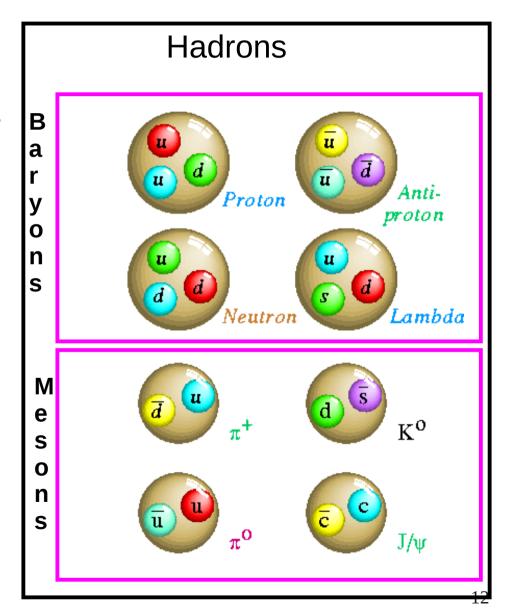
#### Why did we make this excursion?

- Establish background for hadrons
- QCD is very strongly interacting at low energies = everyday life
- In fact so strong that no color charges can exist free
- Instead the color charges (quarks and gluons) are confined inside hadrons!

# Quantum Chromo Dynamics (QCD)

3 color charges (red, green, blue)

Not real colors but e.g. qx, qy, qz that can be +qx for quarks (red) and -qx for anti-quarks (anti-red)


Hadrons have to be colorless

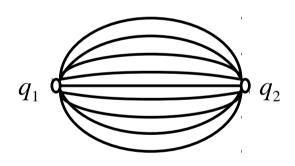
Baryons have all 3 colors

Mesons has a color and an anticolor

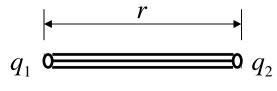
A single quark cannot be observed because it has color!

The quarks are confined inside the hadrons!

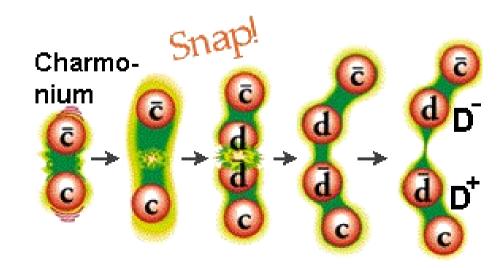



#### QCD & Confinement

- The strong interaction potential
  - Compare the potential of the strong & e.m. interaction


$$V_{em} = -\frac{c}{r}$$

$$V_{em} = -\frac{C}{r}$$
  $V_s = -\frac{C}{r} + kr$   $c, c', k \text{ constants}$ 


- Confining term arises due to the self-interaction property of the colour field. k~1GeV/fm



a) QED or QCD (r < 1 fm)



b) QCD 
$$(r > 1 \text{ fm})$$



# The "self-interaction property" of the strong force!

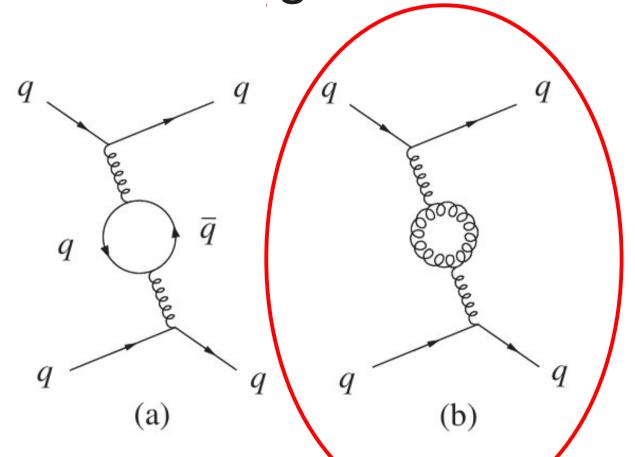
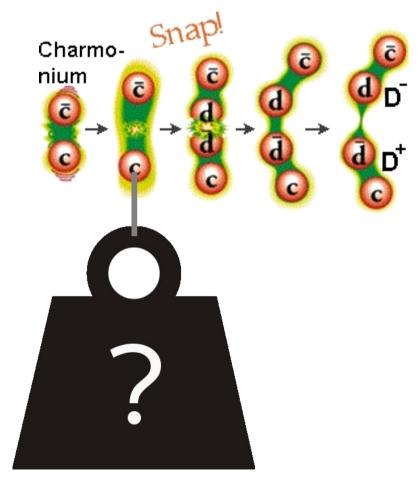




Figure 7.7 The two lowest-order vacuum polarization corrections to one-gluon exchange in quark—quark scattering.

#### Exercise: How big is k?

- k=1GeV/fm
- What force does that correspond to in kilograms?
  - mg= 1 GeV/fm => m=?



#### Consequences of 10 ton force!

- This is why QCD is also called the strong interaction
  - QCD can bind together quarks even though they are EM repulsed
- QCD is for low energies non-perturbative
  - We know the theory but we cannot solve it!
  - We don't know how to describe hadronic properties with QCD
- But at high energies (small distances << 1 fm) we can use perturbative QCD
- Idea: Can we create high energy matter where the quarks and gluons are the fundamental degrees of freedom
  - This is also the phase of matter in the universe around 1 micro second after the big bang!
  - It is first after this time that quarks and gluons "crystallize" into hadrons

### Back to the book:-)

#### Some examples of baryons

TABLE 3.1 The approximate masses of the quarks in  $\text{GeV/c}^2$  and their electric charges Q in units of e. Also shown are the values of the baryon number B, strangeness S, charm C, bottom  $\tilde{B}$  and top T, as defined in Section 3.2. The values for the corresponding antiquarks are equal in magnitude, but opposite in sign.

| Name    | Symbol | Mass              | Q    | В   | S  | С | $\tilde{B}$ | T |
|---------|--------|-------------------|------|-----|----|---|-------------|---|
| Down    | d      | $m_d \approx 0.3$ | -1/3 | 1/3 | 0  | 0 | 0           | 0 |
| Up      | и      | $m_u pprox m_d$   | 2/3  | 1/3 | 0  | 0 | 0           | 0 |
| Strange | S      | $m_s \approx 0.5$ | -1/3 | 1/3 | -1 | 0 | 0           | 0 |
| Charmed | c      | $m_c \approx 1.5$ | 2/3  | 1/3 | 0  | 1 | 0           | 0 |
| Bottom  | b      | $m_b \approx 4.5$ | -1/3 | 1/3 | 0  | 0 | -1          | 0 |
| Top     | t      | $m_t \approx 174$ | 2/3  | 1/3 | 0  | 0 | 0           | 1 |

TABLE 3.2 Some examples of baryons, with their quark compositions and the corresponding values of their electric charge Q, strangeness S, charm C and bottom  $\tilde{B}$ .

| Particle    |     | Mass (MeV/c²) | Q | S  | C | $	ilde{B}$ |
|-------------|-----|---------------|---|----|---|------------|
| p           | uud | 938           | 1 | 0  | 0 | 0          |
| n           | udd | 940           | 0 | 0  | 0 | 0          |
| Λ           | uds | 1116          | 0 | -1 | 0 | 0          |
| $\Lambda_c$ | udc | 2285          | 1 | 0  | 1 | 0          |
| $\Lambda_b$ | udb | 5624          | 0 | 0  | 0 | -1         |

### Some example of mesons

TABLE 3.1 The approximate masses of the quarks in  $GeV/c^2$  and their electric charges Q in units of e. Also shown are the values of the baryon number B, strangeness S, charm C, bottom  $\tilde{B}$  and top T, as defined in Section 3.2. The values for the corresponding antiquarks are equal in magnitude, but opposite in sign.

| Name    | Symbol | Mass              | Q    | В   | S  | С | $\tilde{B}$ | T |
|---------|--------|-------------------|------|-----|----|---|-------------|---|
| Down    | d      | $m_d \approx 0.3$ | -1/3 | 1/3 | 0  | 0 | 0           | 0 |
| Up      | и      | $m_u pprox m_d$   | 2/3  | 1/3 | 0  | 0 | 0           | 0 |
| Strange | S      | $m_s \approx 0.5$ | -1/3 | 1/3 | -1 | 0 | 0           | 0 |
| Charmed | c      | $m_c \approx 1.5$ | 2/3  | 1/3 | 0  | 1 | 0           | 0 |
| Bottom  | b      | $m_b \approx 4.5$ | -1/3 | 1/3 | 0  | 0 | -1          | 0 |
| Тор     | t      | $m_t \approx 174$ | 2/3  | 1/3 | 0  | 0 | 0           | 1 |

TABLE 3.3 Some examples of mesons, with their quark compositions and the corresponding values of their electric charge Q, strangeness S, charm C and bottom  $\tilde{B}$ .

| Particle |                 | Mass (MeV/c2) | Q  | S  | C  | $	ilde{B}$ |
|----------|-----------------|---------------|----|----|----|------------|
| $\pi^+$  | $u\overline{d}$ | 140           | 1  | 0  | 0  | 0          |
| $K^{-}$  | $s\overline{u}$ | 494           | -1 | -1 | 0  | 0          |
| $D^{-}$  | $d\overline{c}$ | 1869          | -1 | 0  | -1 | 0          |
| $D_s^+$  | $c\overline{s}$ | 1969          | 1  | 1  | 1  | 0          |
| $B^{-}$  | $b\overline{u}$ | 5279          | -1 | 0  | 0  | -1         |
| Υ        | $b\overline{b}$ | 9460          | 0  | 0  | 0  | 0          |

#### Important facts about hadrons

- All interactions (EM, weak, strong) preserves the total number of quarks: Nq-Nqbar.
  - As this number is 0 for mesons this leads to baryon number conservation
  - Example: at LHC we collide 2 protons (baryons).
    In the final state there has to be exactly 2 baryons more than anti-baryons (but not necessarily 2 protons)

### Important facts about hadrons (2/2)

- The quark flavor (u, d, s, c, b, t) is conserved in strong and EM interactions
  - Example:
    - Nu = #u quarks # anti-u quarks is conserved
- It is not necessarily conserved in weak interactions!
  - Example:

```
n (udd) \rightarrow p (uud) + e- + \nu_e
```

# Important facts about specie dependence of interactions

- Strong interactions are mediated via color: quark flavor does not matter!
  - All quarks: u, d, s, c, b, t interacts strongly in the same way
- EM interactions are mediated via EM charge
  - Charge -1: e, μ, τ
  - Charge +2/3: u, c, t
  - Charge -1/3: d, s, b
- Weak interactions are mainly in the same generation, e.g.:  $u \leftrightarrow d$  and  $e^- \leftrightarrow \nu_e$
- The mass only affects kinematics!

#### Hierarchy of interactions

TABLE 3.4 Typical lifetimes of hadrons decaying by the three interactions.

| Interaction               | Lifetime (s)                               |  |  |  |
|---------------------------|--------------------------------------------|--|--|--|
| Strong<br>Electromagnetic | $10^{-22} - 10^{-24}  10^{-16} - 10^{-21}$ |  |  |  |
| Weak *                    | $10^{-7} - 10^{-13}$                       |  |  |  |

<sup>\*</sup> The neutron lifetime is an exception, for reasons explained in Section 3.2.

- If a decay can be strong it will be strong
  - Only exception is OZI rule
- If not strong but EM is allowed then it will be EM
- If not strong and EM then it can be weak

### Questions?

#### Resonances

- Resonances are hadrons that decays by strong interactions. They are so short lived that they can only be observed indirectly
- How long do they travel?

TABLE 3.4 Typical lifetimes of hadrons decaying by the three interactions.

| Interaction               | Lifetime (s)                               |
|---------------------------|--------------------------------------------|
| Strong<br>Electromagnetic | $10^{-22} - 10^{-24}  10^{-16} - 10^{-21}$ |
| Weak *                    | $10^{-7} - 10^{-13}$                       |

<sup>\*</sup> The neutron lifetime is an exception, for reasons explained in Section 3.2.

### Resonance states can be excited states

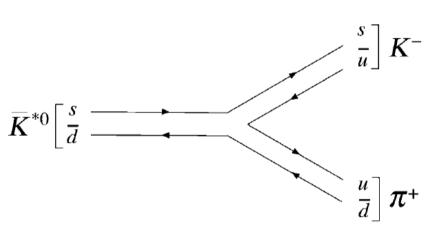



Figure 3.11 Quark diagram for the decay  $\bar{K}^{*0} \to K^- + \pi^+$ .

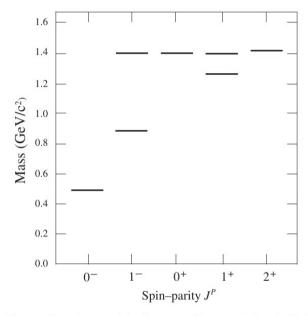
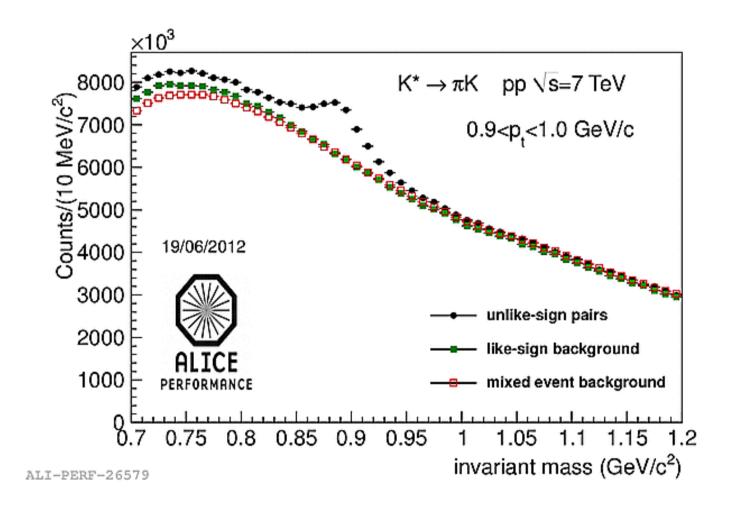
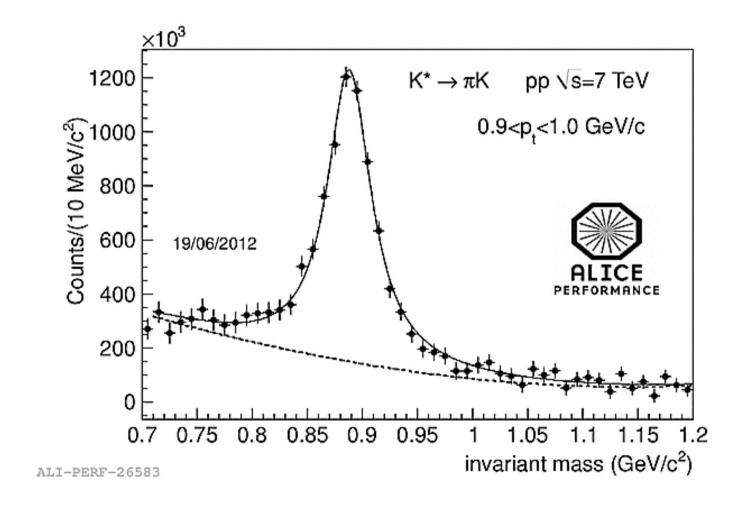





Figure 3.12 Observed bound states of the  $s\bar{u}$  system with masses below 1.5 GeV/c<sup>2</sup>, together with values of their spin-parities  $^9$   $J^P$ . The ground state is the  $K^-$  (494) and the others can be interpreted as its excited states.

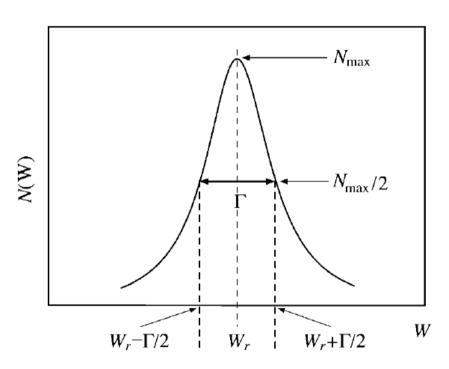
#### **ALICE** reconstruction

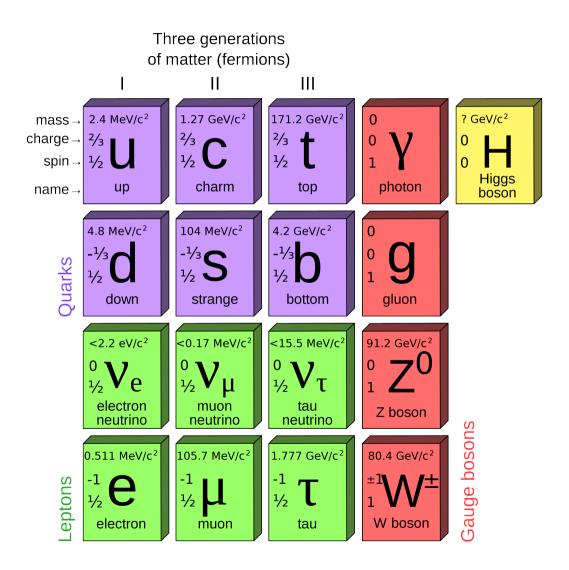


#### Notice that mass is not fixed!



### The mass width is an indication of the lifetime





Figure 3.10 Plot of the Breit–Wigner formula (3.26).

 From Heisenberg uncertainty relation we have:

ΔE\*Δt~hbar →

The width W~hbar/lifetime

#### Summary

